Experimental Investigation on the DLC Film Coating Technology in Scroll Compressors of Automobile Air Conditioning
The friction of the orbiting scroll leads to large power consumption and low energy efficiency of the scroll compressor. The common methods to solve this problem are high cost and a complex process. Considering special structures and operating principles to apply the coating technology on the scroll...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-10-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/13/19/5103 |
_version_ | 1797552070964805632 |
---|---|
author | Zhilong He Lantian Ji Ziwen Xing |
author_facet | Zhilong He Lantian Ji Ziwen Xing |
author_sort | Zhilong He |
collection | DOAJ |
description | The friction of the orbiting scroll leads to large power consumption and low energy efficiency of the scroll compressor. The common methods to solve this problem are high cost and a complex process. Considering special structures and operating principles to apply the coating technology on the scroll compressor is a new subject. Given the material of the orbiting scroll being aluminum alloy, the unbalanced magnetron sputtering technology for the orbiting scroll of the scroll compressor was chosen and the Cr transition layer was coated to enhance the bonding strength. Moreover, we innovatively performed an experiment to verify the feasibility of unbalanced magnetron sputtering film coating technology for the diamond-like carbon film coated in the scroll compressor. This article elaborates the parameter test methods of the film properties before and after experiments and the experimental system components. The results showed that the diamond-like carbon film has low coefficient and high bonding strength, which renders it a good wear-reducing effect and an excellent self-lubricating property. Due to the thin film layer and high operating temperature, the thickness should be increased to raise the abrasion resistance. The refrigeration system with the scroll compressor coated with the diamond-like carbon film can satisfy the national standard conditions with low Vickers hardness. Its performance was improved at low speed. Therefore, the unbalanced magnetron sputtering with increased Cr bond layer is a feasible and appropriate technology for coating diamond-like carbon film. |
first_indexed | 2024-03-10T15:54:44Z |
format | Article |
id | doaj.art-313386fcaf0341b3a31f3aaf43f0fdb9 |
institution | Directory Open Access Journal |
issn | 1996-1073 |
language | English |
last_indexed | 2024-03-10T15:54:44Z |
publishDate | 2020-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj.art-313386fcaf0341b3a31f3aaf43f0fdb92023-11-20T15:44:17ZengMDPI AGEnergies1996-10732020-10-011319510310.3390/en13195103Experimental Investigation on the DLC Film Coating Technology in Scroll Compressors of Automobile Air ConditioningZhilong He0Lantian Ji1Ziwen Xing2School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, ChinaSchool of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, ChinaSchool of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, ChinaThe friction of the orbiting scroll leads to large power consumption and low energy efficiency of the scroll compressor. The common methods to solve this problem are high cost and a complex process. Considering special structures and operating principles to apply the coating technology on the scroll compressor is a new subject. Given the material of the orbiting scroll being aluminum alloy, the unbalanced magnetron sputtering technology for the orbiting scroll of the scroll compressor was chosen and the Cr transition layer was coated to enhance the bonding strength. Moreover, we innovatively performed an experiment to verify the feasibility of unbalanced magnetron sputtering film coating technology for the diamond-like carbon film coated in the scroll compressor. This article elaborates the parameter test methods of the film properties before and after experiments and the experimental system components. The results showed that the diamond-like carbon film has low coefficient and high bonding strength, which renders it a good wear-reducing effect and an excellent self-lubricating property. Due to the thin film layer and high operating temperature, the thickness should be increased to raise the abrasion resistance. The refrigeration system with the scroll compressor coated with the diamond-like carbon film can satisfy the national standard conditions with low Vickers hardness. Its performance was improved at low speed. Therefore, the unbalanced magnetron sputtering with increased Cr bond layer is a feasible and appropriate technology for coating diamond-like carbon film.https://www.mdpi.com/1996-1073/13/19/5103diamond-like carbon filmCr transition layerunbalanced magnetron sputteringscroll compressor |
spellingShingle | Zhilong He Lantian Ji Ziwen Xing Experimental Investigation on the DLC Film Coating Technology in Scroll Compressors of Automobile Air Conditioning Energies diamond-like carbon film Cr transition layer unbalanced magnetron sputtering scroll compressor |
title | Experimental Investigation on the DLC Film Coating Technology in Scroll Compressors of Automobile Air Conditioning |
title_full | Experimental Investigation on the DLC Film Coating Technology in Scroll Compressors of Automobile Air Conditioning |
title_fullStr | Experimental Investigation on the DLC Film Coating Technology in Scroll Compressors of Automobile Air Conditioning |
title_full_unstemmed | Experimental Investigation on the DLC Film Coating Technology in Scroll Compressors of Automobile Air Conditioning |
title_short | Experimental Investigation on the DLC Film Coating Technology in Scroll Compressors of Automobile Air Conditioning |
title_sort | experimental investigation on the dlc film coating technology in scroll compressors of automobile air conditioning |
topic | diamond-like carbon film Cr transition layer unbalanced magnetron sputtering scroll compressor |
url | https://www.mdpi.com/1996-1073/13/19/5103 |
work_keys_str_mv | AT zhilonghe experimentalinvestigationonthedlcfilmcoatingtechnologyinscrollcompressorsofautomobileairconditioning AT lantianji experimentalinvestigationonthedlcfilmcoatingtechnologyinscrollcompressorsofautomobileairconditioning AT ziwenxing experimentalinvestigationonthedlcfilmcoatingtechnologyinscrollcompressorsofautomobileairconditioning |