A General Paradigm for Retrieving Soil Moisture and Surface Temperature from Passive Microwave Remote Sensing Data Based on Artificial Intelligence
Soil moisture (SM) and land surface temperature (LST) are entangled, and the retrieval of one of them requires a priori specification of the other one. Due to insufficient observational information, retrieval of LST and SM from passive microwave remote sensing data is often ill-posed, and the retrie...
Główni autorzy: | Kebiao Mao, Han Wang, Jiancheng Shi, Essam Heggy, Shengli Wu, Sayed M. Bateni, Guoming Du |
---|---|
Format: | Artykuł |
Język: | English |
Wydane: |
MDPI AG
2023-03-01
|
Seria: | Remote Sensing |
Hasła przedmiotowe: | |
Dostęp online: | https://www.mdpi.com/2072-4292/15/7/1793 |
Podobne zapisy
-
Review of GNSS-R Technology for Soil Moisture Inversion
od: Changzhi Yang, i wsp.
Wydane: (2024-03-01) -
A Time-Constrained and Spatially Explicit AI Model for Soil Moisture Inversion Using CYGNSS Data
od: Changzhi Yang, i wsp.
Wydane: (2025-01-01) -
Soil Moisture Retrievals by Combining Passive Microwave and Optical Data
od: Cheng Tong, i wsp.
Wydane: (2020-09-01) -
Remote sensing of energy fluxes and soil moisture content /
od: Petropoulos, George P., editor
Wydane: (2014) -
Sensitivity Analysis of Bistatic Scattering for Soil Moisture Retrieval
od: Tingting Li, i wsp.
Wydane: (2021-01-01)