Herpes simplex virus co-infection facilitates rolling circle replication of the adeno-associated virus genome.

Adeno-associated virus (AAV) genome replication only occurs in the presence of a co-infecting helper virus such as adenovirus type 5 (AdV5) or herpes simplex virus type 1 (HSV-1). AdV5-supported replication of the AAV genome has been described to occur in a strand-displacement rolling hairpin replic...

Full description

Bibliographic Details
Main Authors: Anita Felicitas Meier, Kurt Tobler, Remo Leisi, Anouk Lkharrazi, Carlos Ros, Cornel Fraefel
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2021-06-01
Series:PLoS Pathogens
Online Access:https://doi.org/10.1371/journal.ppat.1009638
Description
Summary:Adeno-associated virus (AAV) genome replication only occurs in the presence of a co-infecting helper virus such as adenovirus type 5 (AdV5) or herpes simplex virus type 1 (HSV-1). AdV5-supported replication of the AAV genome has been described to occur in a strand-displacement rolling hairpin replication (RHR) mechanism initiated at the AAV 3' inverted terminal repeat (ITR) end. It has been assumed that the same mechanism applies to HSV-1-supported AAV genome replication. Using Southern analysis and nanopore sequencing as a novel, high-throughput approach to study viral genome replication we demonstrate the formation of double-stranded head-to-tail concatemers of AAV genomes in the presence of HSV-1, thus providing evidence for an unequivocal rolling circle replication (RCR) mechanism. This stands in contrast to the textbook model of AAV genome replication when HSV-1 is the helper virus.
ISSN:1553-7366
1553-7374