A Probabilistic Approach to Seismic Diffraction Imaging

AbstractWe propose and demonstrate a probabilistic method for imaging seismic diffractions based on path-integral imaging. Our approach uses oriented velocity continuation to produce a set of slope-decomposed diffraction images over a range of plausible migration velocities. Utilizin...

Full description

Bibliographic Details
Main Authors: Luke Decker, Sergey Fomel
Format: Article
Language:English
Published: GeoScienceWorld 2021-10-01
Series:Lithosphere
Online Access:https://pubs.geoscienceworld.org/lithosphere/article/2021/1/6650633/608322/A-Probabilistic-Approach-to-Seismic-Diffraction
_version_ 1811332865934229504
author Luke Decker
Sergey Fomel
author_facet Luke Decker
Sergey Fomel
author_sort Luke Decker
collection DOAJ
description AbstractWe propose and demonstrate a probabilistic method for imaging seismic diffractions based on path-integral imaging. Our approach uses oriented velocity continuation to produce a set of slope-decomposed diffraction images over a range of plausible migration velocities. Utilizing the assumption that each partial image in slope is independent enables us to construct an object resembling a probability field from the slope-decomposed images. That field may be used to create weights for each partial image in velocity corresponding to the likelihood of a correctly migrated diffraction occurring at a location within the seismic image for that migration velocity. Stacking these weighted partial images over velocity provides us with a path-integral seismic diffraction image created using probability weights. We illustrate the principles of the method on a simple toy model, show its robustness to noise on a synthetic, and apply it to a 2D field dataset from the Nankai Trough. We find that using the proposed approach creates diffraction images that enhance diffraction signal while suppressing noise, migration artifacts, remnant reflections, and other portions of the wavefield not corresponding to seismic diffraction relative to previously developed diffraction imaging methods, while simultaneously outputting the most likely migration velocity. The method is intended to be used on data which has already had much of the reflection energy removed using a method like plane-wave destruction. Although it suppresses residual reflection energy successfully, this suppression is less effective in the presence of strong reflections typically encountered in complete field data. The approach outlined in this paper is complimentary to existing data domain methods for diffraction extraction, and the probabilistic diffraction images it generates can supplement existing reflection and diffraction imaging methods by highlighting features that have a high likelihood of being diffractions and accentuating the geologically interesting objects in the subsurface that cause those features.
first_indexed 2024-04-13T16:43:30Z
format Article
id doaj.art-3146d90235b84174a2b6f7a74ad34a1b
institution Directory Open Access Journal
issn 1941-8264
1947-4253
language English
last_indexed 2024-04-13T16:43:30Z
publishDate 2021-10-01
publisher GeoScienceWorld
record_format Article
series Lithosphere
spelling doaj.art-3146d90235b84174a2b6f7a74ad34a1b2022-12-22T02:39:09ZengGeoScienceWorldLithosphere1941-82641947-42532021-10-012021110.2113/2021/6650633A Probabilistic Approach to Seismic Diffraction ImagingLuke Decker0http://orcid.org/0000-0002-7618-6281Sergey Fomel1http://orcid.org/0000-0002-9024-5137Oden Institute for Computational Engineering and Sciences The University of Texas at Austin 201 E 24th St Austin TX 78712 USA utexas.eduOden Institute for Computational Engineering and Sciences The University of Texas at Austin 201 E 24th St Austin TX 78712 USA utexas.edu AbstractWe propose and demonstrate a probabilistic method for imaging seismic diffractions based on path-integral imaging. Our approach uses oriented velocity continuation to produce a set of slope-decomposed diffraction images over a range of plausible migration velocities. Utilizing the assumption that each partial image in slope is independent enables us to construct an object resembling a probability field from the slope-decomposed images. That field may be used to create weights for each partial image in velocity corresponding to the likelihood of a correctly migrated diffraction occurring at a location within the seismic image for that migration velocity. Stacking these weighted partial images over velocity provides us with a path-integral seismic diffraction image created using probability weights. We illustrate the principles of the method on a simple toy model, show its robustness to noise on a synthetic, and apply it to a 2D field dataset from the Nankai Trough. We find that using the proposed approach creates diffraction images that enhance diffraction signal while suppressing noise, migration artifacts, remnant reflections, and other portions of the wavefield not corresponding to seismic diffraction relative to previously developed diffraction imaging methods, while simultaneously outputting the most likely migration velocity. The method is intended to be used on data which has already had much of the reflection energy removed using a method like plane-wave destruction. Although it suppresses residual reflection energy successfully, this suppression is less effective in the presence of strong reflections typically encountered in complete field data. The approach outlined in this paper is complimentary to existing data domain methods for diffraction extraction, and the probabilistic diffraction images it generates can supplement existing reflection and diffraction imaging methods by highlighting features that have a high likelihood of being diffractions and accentuating the geologically interesting objects in the subsurface that cause those features.https://pubs.geoscienceworld.org/lithosphere/article/2021/1/6650633/608322/A-Probabilistic-Approach-to-Seismic-Diffraction
spellingShingle Luke Decker
Sergey Fomel
A Probabilistic Approach to Seismic Diffraction Imaging
Lithosphere
title A Probabilistic Approach to Seismic Diffraction Imaging
title_full A Probabilistic Approach to Seismic Diffraction Imaging
title_fullStr A Probabilistic Approach to Seismic Diffraction Imaging
title_full_unstemmed A Probabilistic Approach to Seismic Diffraction Imaging
title_short A Probabilistic Approach to Seismic Diffraction Imaging
title_sort probabilistic approach to seismic diffraction imaging
url https://pubs.geoscienceworld.org/lithosphere/article/2021/1/6650633/608322/A-Probabilistic-Approach-to-Seismic-Diffraction
work_keys_str_mv AT lukedecker aprobabilisticapproachtoseismicdiffractionimaging
AT sergeyfomel aprobabilisticapproachtoseismicdiffractionimaging
AT lukedecker probabilisticapproachtoseismicdiffractionimaging
AT sergeyfomel probabilisticapproachtoseismicdiffractionimaging