Joint Design of a Simultaneous Reflection and Transmission RIS in Mode-Switching Mode to Assist NOMA Systems

Simultaneous transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) can reflect signals and transmissive signals simultaneously and can extend the coverage of signals. A conventional RIS mainly focuses on the case where the signal source and the target are on the same side. In t...

Full description

Bibliographic Details
Main Authors: Xiaoping Zhou, Hanqi Wang, Jiajia Chen
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/12/5504
Description
Summary:Simultaneous transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) can reflect signals and transmissive signals simultaneously and can extend the coverage of signals. A conventional RIS mainly focuses on the case where the signal source and the target are on the same side. In this paper, a STAR-RIS-assisted non-orthogonal multiple access (NOMA) downlink communication system is considered to maximize the achievable rate for users by jointly optimizing the power-allocation coefficients, active beamforming, and STAR-RIS beamforming under the mode-switching (MS) protocol. The critical information of the channel is first extracted using the Uniform Manifold Approximation and Projection (UMAP) method. Based on the key extracted channel features, STAR-RIS elements and users are clustered individually using the fuzzy C-mean clustering (FCM) method. The alternating optimization method decomposes the original optimization problem into three sub-optimization problems. Finally, the sub-problems are converted to unconstrained optimization methods using penalty functions for the solution. Simulation results show that when the number of elements of RIS is 60, the achievable rate of the STAR-RIS–NOMA system is about 18% higher than that of the RIS–NOMA system.
ISSN:1424-8220