Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2}
Strongly correlated electron systems are one of the central topics in contemporary solid-state physics. Prominent examples for such systems are Kondo lattices, i.e., intermetallic materials in which below a critical temperature, the Kondo temperature T_{K}, the magnetic moments become quenched and t...
Main Authors: | , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2015-03-01
|
Series: | Physical Review X |
Online Access: | http://doi.org/10.1103/PhysRevX.5.011028 |
_version_ | 1819010689142882304 |
---|---|
author | K. Kummer S. Patil A. Chikina M. Güttler M. Höppner A. Generalov S. Danzenbächer S. Seiro A. Hannaske C. Krellner Yu. Kucherenko M. Shi M. Radovic E. Rienks G. Zwicknagl K. Matho J. W. Allen C. Laubschat C. Geibel D. V. Vyalikh |
author_facet | K. Kummer S. Patil A. Chikina M. Güttler M. Höppner A. Generalov S. Danzenbächer S. Seiro A. Hannaske C. Krellner Yu. Kucherenko M. Shi M. Radovic E. Rienks G. Zwicknagl K. Matho J. W. Allen C. Laubschat C. Geibel D. V. Vyalikh |
author_sort | K. Kummer |
collection | DOAJ |
description | Strongly correlated electron systems are one of the central topics in contemporary solid-state physics. Prominent examples for such systems are Kondo lattices, i.e., intermetallic materials in which below a critical temperature, the Kondo temperature T_{K}, the magnetic moments become quenched and the effective masses of the conduction electrons approach the mass of a proton. In Ce- and Yb-based systems, this so-called heavy-fermion behavior is caused by interactions between the strongly localized 4f and itinerant electrons. A major and very controversially discussed issue in this context is how the localized electronic degree of freedom gets involved in the Fermi surface (FS) upon increasing the interaction between both kinds of electrons or upon changing the temperature. In this paper, we show that the FS of a prototypic Kondo lattice, YbRh_{2}Si_{2}, does not change its size or shape in a wide temperature range extending from well below to far above the single-ion Kondo temperature T_{K}∼25 K of this system. This experimental observation, obtained by means of angle-resolved photoemission spectroscopy, is in remarkable contrast to the widely believed evolution from a large FS, including the 4f degrees of freedom, to a small FS, without the 4f’s, upon increasing temperature. Our results explicitly demonstrate a need to further advance in theoretical approaches based on the periodic Anderson model in order to elucidate the temperature dependence of Fermi surfaces in Kondo lattices. |
first_indexed | 2024-12-21T01:16:15Z |
format | Article |
id | doaj.art-314d5ccd35e64b69a376321d5e566c84 |
institution | Directory Open Access Journal |
issn | 2160-3308 |
language | English |
last_indexed | 2024-12-21T01:16:15Z |
publishDate | 2015-03-01 |
publisher | American Physical Society |
record_format | Article |
series | Physical Review X |
spelling | doaj.art-314d5ccd35e64b69a376321d5e566c842022-12-21T19:20:46ZengAmerican Physical SocietyPhysical Review X2160-33082015-03-015101102810.1103/PhysRevX.5.011028Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2}K. KummerS. PatilA. ChikinaM. GüttlerM. HöppnerA. GeneralovS. DanzenbächerS. SeiroA. HannaskeC. KrellnerYu. KucherenkoM. ShiM. RadovicE. RienksG. ZwicknaglK. MathoJ. W. AllenC. LaubschatC. GeibelD. V. VyalikhStrongly correlated electron systems are one of the central topics in contemporary solid-state physics. Prominent examples for such systems are Kondo lattices, i.e., intermetallic materials in which below a critical temperature, the Kondo temperature T_{K}, the magnetic moments become quenched and the effective masses of the conduction electrons approach the mass of a proton. In Ce- and Yb-based systems, this so-called heavy-fermion behavior is caused by interactions between the strongly localized 4f and itinerant electrons. A major and very controversially discussed issue in this context is how the localized electronic degree of freedom gets involved in the Fermi surface (FS) upon increasing the interaction between both kinds of electrons or upon changing the temperature. In this paper, we show that the FS of a prototypic Kondo lattice, YbRh_{2}Si_{2}, does not change its size or shape in a wide temperature range extending from well below to far above the single-ion Kondo temperature T_{K}∼25 K of this system. This experimental observation, obtained by means of angle-resolved photoemission spectroscopy, is in remarkable contrast to the widely believed evolution from a large FS, including the 4f degrees of freedom, to a small FS, without the 4f’s, upon increasing temperature. Our results explicitly demonstrate a need to further advance in theoretical approaches based on the periodic Anderson model in order to elucidate the temperature dependence of Fermi surfaces in Kondo lattices.http://doi.org/10.1103/PhysRevX.5.011028 |
spellingShingle | K. Kummer S. Patil A. Chikina M. Güttler M. Höppner A. Generalov S. Danzenbächer S. Seiro A. Hannaske C. Krellner Yu. Kucherenko M. Shi M. Radovic E. Rienks G. Zwicknagl K. Matho J. W. Allen C. Laubschat C. Geibel D. V. Vyalikh Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2} Physical Review X |
title | Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2} |
title_full | Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2} |
title_fullStr | Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2} |
title_full_unstemmed | Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2} |
title_short | Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2} |
title_sort | temperature independent fermi surface in the kondo lattice ybrh 2 si 2 |
url | http://doi.org/10.1103/PhysRevX.5.011028 |
work_keys_str_mv | AT kkummer temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT spatil temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT achikina temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT mguttler temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT mhoppner temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT ageneralov temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT sdanzenbacher temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT sseiro temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT ahannaske temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT ckrellner temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT yukucherenko temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT mshi temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT mradovic temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT erienks temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT gzwicknagl temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT kmatho temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT jwallen temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT claubschat temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT cgeibel temperatureindependentfermisurfaceinthekondolatticeybrh2si2 AT dvvyalikh temperatureindependentfermisurfaceinthekondolatticeybrh2si2 |