Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2}

Strongly correlated electron systems are one of the central topics in contemporary solid-state physics. Prominent examples for such systems are Kondo lattices, i.e., intermetallic materials in which below a critical temperature, the Kondo temperature T_{K}, the magnetic moments become quenched and t...

Full description

Bibliographic Details
Main Authors: K. Kummer, S. Patil, A. Chikina, M. Güttler, M. Höppner, A. Generalov, S. Danzenbächer, S. Seiro, A. Hannaske, C. Krellner, Yu. Kucherenko, M. Shi, M. Radovic, E. Rienks, G. Zwicknagl, K. Matho, J. W. Allen, C. Laubschat, C. Geibel, D. V. Vyalikh
Format: Article
Language:English
Published: American Physical Society 2015-03-01
Series:Physical Review X
Online Access:http://doi.org/10.1103/PhysRevX.5.011028
_version_ 1819010689142882304
author K. Kummer
S. Patil
A. Chikina
M. Güttler
M. Höppner
A. Generalov
S. Danzenbächer
S. Seiro
A. Hannaske
C. Krellner
Yu. Kucherenko
M. Shi
M. Radovic
E. Rienks
G. Zwicknagl
K. Matho
J. W. Allen
C. Laubschat
C. Geibel
D. V. Vyalikh
author_facet K. Kummer
S. Patil
A. Chikina
M. Güttler
M. Höppner
A. Generalov
S. Danzenbächer
S. Seiro
A. Hannaske
C. Krellner
Yu. Kucherenko
M. Shi
M. Radovic
E. Rienks
G. Zwicknagl
K. Matho
J. W. Allen
C. Laubschat
C. Geibel
D. V. Vyalikh
author_sort K. Kummer
collection DOAJ
description Strongly correlated electron systems are one of the central topics in contemporary solid-state physics. Prominent examples for such systems are Kondo lattices, i.e., intermetallic materials in which below a critical temperature, the Kondo temperature T_{K}, the magnetic moments become quenched and the effective masses of the conduction electrons approach the mass of a proton. In Ce- and Yb-based systems, this so-called heavy-fermion behavior is caused by interactions between the strongly localized 4f and itinerant electrons. A major and very controversially discussed issue in this context is how the localized electronic degree of freedom gets involved in the Fermi surface (FS) upon increasing the interaction between both kinds of electrons or upon changing the temperature. In this paper, we show that the FS of a prototypic Kondo lattice, YbRh_{2}Si_{2}, does not change its size or shape in a wide temperature range extending from well below to far above the single-ion Kondo temperature T_{K}∼25  K of this system. This experimental observation, obtained by means of angle-resolved photoemission spectroscopy, is in remarkable contrast to the widely believed evolution from a large FS, including the 4f degrees of freedom, to a small FS, without the 4f’s, upon increasing temperature. Our results explicitly demonstrate a need to further advance in theoretical approaches based on the periodic Anderson model in order to elucidate the temperature dependence of Fermi surfaces in Kondo lattices.
first_indexed 2024-12-21T01:16:15Z
format Article
id doaj.art-314d5ccd35e64b69a376321d5e566c84
institution Directory Open Access Journal
issn 2160-3308
language English
last_indexed 2024-12-21T01:16:15Z
publishDate 2015-03-01
publisher American Physical Society
record_format Article
series Physical Review X
spelling doaj.art-314d5ccd35e64b69a376321d5e566c842022-12-21T19:20:46ZengAmerican Physical SocietyPhysical Review X2160-33082015-03-015101102810.1103/PhysRevX.5.011028Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2}K. KummerS. PatilA. ChikinaM. GüttlerM. HöppnerA. GeneralovS. DanzenbächerS. SeiroA. HannaskeC. KrellnerYu. KucherenkoM. ShiM. RadovicE. RienksG. ZwicknaglK. MathoJ. W. AllenC. LaubschatC. GeibelD. V. VyalikhStrongly correlated electron systems are one of the central topics in contemporary solid-state physics. Prominent examples for such systems are Kondo lattices, i.e., intermetallic materials in which below a critical temperature, the Kondo temperature T_{K}, the magnetic moments become quenched and the effective masses of the conduction electrons approach the mass of a proton. In Ce- and Yb-based systems, this so-called heavy-fermion behavior is caused by interactions between the strongly localized 4f and itinerant electrons. A major and very controversially discussed issue in this context is how the localized electronic degree of freedom gets involved in the Fermi surface (FS) upon increasing the interaction between both kinds of electrons or upon changing the temperature. In this paper, we show that the FS of a prototypic Kondo lattice, YbRh_{2}Si_{2}, does not change its size or shape in a wide temperature range extending from well below to far above the single-ion Kondo temperature T_{K}∼25  K of this system. This experimental observation, obtained by means of angle-resolved photoemission spectroscopy, is in remarkable contrast to the widely believed evolution from a large FS, including the 4f degrees of freedom, to a small FS, without the 4f’s, upon increasing temperature. Our results explicitly demonstrate a need to further advance in theoretical approaches based on the periodic Anderson model in order to elucidate the temperature dependence of Fermi surfaces in Kondo lattices.http://doi.org/10.1103/PhysRevX.5.011028
spellingShingle K. Kummer
S. Patil
A. Chikina
M. Güttler
M. Höppner
A. Generalov
S. Danzenbächer
S. Seiro
A. Hannaske
C. Krellner
Yu. Kucherenko
M. Shi
M. Radovic
E. Rienks
G. Zwicknagl
K. Matho
J. W. Allen
C. Laubschat
C. Geibel
D. V. Vyalikh
Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2}
Physical Review X
title Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2}
title_full Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2}
title_fullStr Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2}
title_full_unstemmed Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2}
title_short Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2}
title_sort temperature independent fermi surface in the kondo lattice ybrh 2 si 2
url http://doi.org/10.1103/PhysRevX.5.011028
work_keys_str_mv AT kkummer temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT spatil temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT achikina temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT mguttler temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT mhoppner temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT ageneralov temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT sdanzenbacher temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT sseiro temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT ahannaske temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT ckrellner temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT yukucherenko temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT mshi temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT mradovic temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT erienks temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT gzwicknagl temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT kmatho temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT jwallen temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT claubschat temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT cgeibel temperatureindependentfermisurfaceinthekondolatticeybrh2si2
AT dvvyalikh temperatureindependentfermisurfaceinthekondolatticeybrh2si2