Drawing a materials map with an autoencoder for lithium ionic conductors

Abstract Efforts to optimize known materials and enhance their performance are ongoing, driven by the advancements resulting from the discovery of novel functional materials. Traditionally, the search for and optimization of functional materials has relied on the experience and intuition of speciali...

Full description

Bibliographic Details
Main Authors: Yudai Yamaguchi, Taruto Atsumi, Kenta Kanamori, Naoto Tanibata, Hayami Takeda, Masanobu Nakayama, Masayuki Karasuyama, Ichiro Takeuchi
Format: Article
Language:English
Published: Nature Portfolio 2023-10-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-43921-1
Description
Summary:Abstract Efforts to optimize known materials and enhance their performance are ongoing, driven by the advancements resulting from the discovery of novel functional materials. Traditionally, the search for and optimization of functional materials has relied on the experience and intuition of specialized researchers. However, materials informatics (MI), which integrates materials data and machine learning, has frequently been used to realize systematic and efficient materials exploration without depending on manual tasks. Nonetheless, the discovery of new materials using MI remains challenging. In this study, we propose a method for the discovery of materials outside the scope of existing databases by combining MI with the experience and intuition of researchers. Specifically, we designed a two-dimensional map that plots known materials data based on their composition and structure, facilitating researchers’ intuitive search for new materials. The materials map was implemented using an autoencoder-based neural network. We focused on the conductivity of 708 lithium oxide materials and considered the correlation with migration energy (ME), an index of lithium-ion conductivity. The distribution of existing data reflected in the materials map can contribute to the development of new lithium-ion conductive materials by enhancing the experience and intuition of material researchers.
ISSN:2045-2322