Experimental Study on the Near-Bed Flow Characteristics of Alluvial Channel with Seepage

This paper aims to analyze the turbulent structure of flows over beds undergoing downward seepage under clear-water conditions. Laboratory experiments in this regard were carried out in a straight rectangular channel that was 17.20 m long and 1.00 m wide. A sandy bed with median grain size <i>...

Full description

Bibliographic Details
Main Authors: Anurag Sharma, Bimlesh Kumar, Giuseppe Oliveto
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/20/9619
Description
Summary:This paper aims to analyze the turbulent structure of flows over beds undergoing downward seepage under clear-water conditions. Laboratory experiments in this regard were carried out in a straight rectangular channel that was 17.20 m long and 1.00 m wide. A sandy bed with median grain size <i>d</i><sub>50</sub> = 0.50 mm and sediment gradation <i>σ<sub>g</sub></i> = 1.65 (i.e., slightly non-uniform sediment) was used for the channel bed. The 3D instantaneous velocities of water were measured with an Acoustic Doppler Velocimeter (ADV) at the working test section. In the vicinity of the bed surface with seepage, measurements revealed that the flow longitudinal velocities (i.e., velocities in <i>x</i> direction) were higher than those in the case of a bed without seepage. Moreover, the variations inthe Reynolds shear stresses increased for the bed with seepage, indicating a higher exchange of flow energy towards the boundary and vice versa. Therefore, it was found that seepage processes influence the turbulence intensity, with a prominent magnitude in the streamwise and vertical directions. The paper also focuses on the third-order moment (skewness) and the kurtosis of velocity fluctuations and the governance of sweep events within the near-bed flow in cases where seepage was observed.
ISSN:2076-3417