Bioengineering of the Marine Diatom <i>Phaeodactylum tricornutum</i> with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic Acid
The increasing demand for novel natural compounds has prompted the exploration of innovative approaches in bioengineering. This study investigates the bioengineering potential of the marine diatom <i>Phaeodactylum tricornutum</i> through the introduction of cannabis genes, specifically,...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-11-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/24/23/16624 |
_version_ | 1797400097856684032 |
---|---|
author | Fatima Awwad Elisa Ines Fantino Marianne Héneault Aracely Maribel Diaz-Garza Natacha Merindol Alexandre Custeau Sarah-Eve Gélinas Fatma Meddeb-Mouelhi Jessica Li Jean-François Lemay Bogumil J. Karas Isabel Desgagne-Penix |
author_facet | Fatima Awwad Elisa Ines Fantino Marianne Héneault Aracely Maribel Diaz-Garza Natacha Merindol Alexandre Custeau Sarah-Eve Gélinas Fatma Meddeb-Mouelhi Jessica Li Jean-François Lemay Bogumil J. Karas Isabel Desgagne-Penix |
author_sort | Fatima Awwad |
collection | DOAJ |
description | The increasing demand for novel natural compounds has prompted the exploration of innovative approaches in bioengineering. This study investigates the bioengineering potential of the marine diatom <i>Phaeodactylum tricornutum</i> through the introduction of cannabis genes, specifically, tetraketide synthase (TKS), and olivetolic acid cyclase (OAC), for the production of the cannabinoid precursor, olivetolic acid (OA). <i>P. tricornutum</i> is a promising biotechnological platform due to its fast growth rate, amenability to genetic manipulation, and ability to produce valuable compounds. Through genetic engineering techniques, we successfully integrated the cannabis genes <i>TKS</i> and <i>OAC</i> into the diatom. <i>P. tricornutum</i> transconjugants expressing these genes showed the production of the recombinant TKS and OAC enzymes, detected via Western blot analysis, and the production of cannabinoids precursor (OA) detected using the HPLC/UV spectrum when compared to the wild-type strain. Quantitative analysis revealed significant olivetolic acid accumulation (0.6–2.6 mg/L), demonstrating the successful integration and functionality of the heterologous genes. Furthermore, the introduction of TKS and OAC genes led to the synthesis of novel molecules, potentially expanding the repertoire of bioactive compounds accessible through diatom-based biotechnology. This study demonstrates the successful bioengineering of <i>P. tricornutum</i> with cannabis genes, enabling the production of OA as a precursor for cannabinoid production and the synthesis of novel molecules with potential pharmaceutical applications. |
first_indexed | 2024-03-09T01:50:38Z |
format | Article |
id | doaj.art-316d443c202e447d85f3397e9e838f9c |
institution | Directory Open Access Journal |
issn | 1661-6596 1422-0067 |
language | English |
last_indexed | 2024-03-09T01:50:38Z |
publishDate | 2023-11-01 |
publisher | MDPI AG |
record_format | Article |
series | International Journal of Molecular Sciences |
spelling | doaj.art-316d443c202e447d85f3397e9e838f9c2023-12-08T15:16:34ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672023-11-0124231662410.3390/ijms242316624Bioengineering of the Marine Diatom <i>Phaeodactylum tricornutum</i> with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic AcidFatima Awwad0Elisa Ines Fantino1Marianne Héneault2Aracely Maribel Diaz-Garza3Natacha Merindol4Alexandre Custeau5Sarah-Eve Gélinas6Fatma Meddeb-Mouelhi7Jessica Li8Jean-François Lemay9Bogumil J. Karas10Isabel Desgagne-Penix11Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaDepartment of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaDepartment of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaDepartment of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaDepartment of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaDepartment of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaDepartment of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaDepartment of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaDepartment of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, CanadaCentre National en Électrochimie et en Technologies Environnementales Inc., 2263 Avenue du Collège, Shawinigan, QC G9N 6V8, CanadaDepartment of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, CanadaDepartment of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaThe increasing demand for novel natural compounds has prompted the exploration of innovative approaches in bioengineering. This study investigates the bioengineering potential of the marine diatom <i>Phaeodactylum tricornutum</i> through the introduction of cannabis genes, specifically, tetraketide synthase (TKS), and olivetolic acid cyclase (OAC), for the production of the cannabinoid precursor, olivetolic acid (OA). <i>P. tricornutum</i> is a promising biotechnological platform due to its fast growth rate, amenability to genetic manipulation, and ability to produce valuable compounds. Through genetic engineering techniques, we successfully integrated the cannabis genes <i>TKS</i> and <i>OAC</i> into the diatom. <i>P. tricornutum</i> transconjugants expressing these genes showed the production of the recombinant TKS and OAC enzymes, detected via Western blot analysis, and the production of cannabinoids precursor (OA) detected using the HPLC/UV spectrum when compared to the wild-type strain. Quantitative analysis revealed significant olivetolic acid accumulation (0.6–2.6 mg/L), demonstrating the successful integration and functionality of the heterologous genes. Furthermore, the introduction of TKS and OAC genes led to the synthesis of novel molecules, potentially expanding the repertoire of bioactive compounds accessible through diatom-based biotechnology. This study demonstrates the successful bioengineering of <i>P. tricornutum</i> with cannabis genes, enabling the production of OA as a precursor for cannabinoid production and the synthesis of novel molecules with potential pharmaceutical applications.https://www.mdpi.com/1422-0067/24/23/16624diatommetabolic engineeringolivetolic acid cyclasetetraketide synthasesynthetic biologycannabinoids |
spellingShingle | Fatima Awwad Elisa Ines Fantino Marianne Héneault Aracely Maribel Diaz-Garza Natacha Merindol Alexandre Custeau Sarah-Eve Gélinas Fatma Meddeb-Mouelhi Jessica Li Jean-François Lemay Bogumil J. Karas Isabel Desgagne-Penix Bioengineering of the Marine Diatom <i>Phaeodactylum tricornutum</i> with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic Acid International Journal of Molecular Sciences diatom metabolic engineering olivetolic acid cyclase tetraketide synthase synthetic biology cannabinoids |
title | Bioengineering of the Marine Diatom <i>Phaeodactylum tricornutum</i> with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic Acid |
title_full | Bioengineering of the Marine Diatom <i>Phaeodactylum tricornutum</i> with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic Acid |
title_fullStr | Bioengineering of the Marine Diatom <i>Phaeodactylum tricornutum</i> with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic Acid |
title_full_unstemmed | Bioengineering of the Marine Diatom <i>Phaeodactylum tricornutum</i> with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic Acid |
title_short | Bioengineering of the Marine Diatom <i>Phaeodactylum tricornutum</i> with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic Acid |
title_sort | bioengineering of the marine diatom i phaeodactylum tricornutum i with cannabis genes enables the production of the cannabinoid precursor olivetolic acid |
topic | diatom metabolic engineering olivetolic acid cyclase tetraketide synthase synthetic biology cannabinoids |
url | https://www.mdpi.com/1422-0067/24/23/16624 |
work_keys_str_mv | AT fatimaawwad bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid AT elisainesfantino bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid AT marianneheneault bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid AT aracelymaribeldiazgarza bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid AT natachamerindol bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid AT alexandrecusteau bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid AT sarahevegelinas bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid AT fatmameddebmouelhi bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid AT jessicali bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid AT jeanfrancoislemay bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid AT bogumiljkaras bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid AT isabeldesgagnepenix bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid |