Bioengineering of the Marine Diatom <i>Phaeodactylum tricornutum</i> with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic Acid

The increasing demand for novel natural compounds has prompted the exploration of innovative approaches in bioengineering. This study investigates the bioengineering potential of the marine diatom <i>Phaeodactylum tricornutum</i> through the introduction of cannabis genes, specifically,...

Full description

Bibliographic Details
Main Authors: Fatima Awwad, Elisa Ines Fantino, Marianne Héneault, Aracely Maribel Diaz-Garza, Natacha Merindol, Alexandre Custeau, Sarah-Eve Gélinas, Fatma Meddeb-Mouelhi, Jessica Li, Jean-François Lemay, Bogumil J. Karas, Isabel Desgagne-Penix
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/24/23/16624
_version_ 1797400097856684032
author Fatima Awwad
Elisa Ines Fantino
Marianne Héneault
Aracely Maribel Diaz-Garza
Natacha Merindol
Alexandre Custeau
Sarah-Eve Gélinas
Fatma Meddeb-Mouelhi
Jessica Li
Jean-François Lemay
Bogumil J. Karas
Isabel Desgagne-Penix
author_facet Fatima Awwad
Elisa Ines Fantino
Marianne Héneault
Aracely Maribel Diaz-Garza
Natacha Merindol
Alexandre Custeau
Sarah-Eve Gélinas
Fatma Meddeb-Mouelhi
Jessica Li
Jean-François Lemay
Bogumil J. Karas
Isabel Desgagne-Penix
author_sort Fatima Awwad
collection DOAJ
description The increasing demand for novel natural compounds has prompted the exploration of innovative approaches in bioengineering. This study investigates the bioengineering potential of the marine diatom <i>Phaeodactylum tricornutum</i> through the introduction of cannabis genes, specifically, tetraketide synthase (TKS), and olivetolic acid cyclase (OAC), for the production of the cannabinoid precursor, olivetolic acid (OA). <i>P. tricornutum</i> is a promising biotechnological platform due to its fast growth rate, amenability to genetic manipulation, and ability to produce valuable compounds. Through genetic engineering techniques, we successfully integrated the cannabis genes <i>TKS</i> and <i>OAC</i> into the diatom. <i>P. tricornutum</i> transconjugants expressing these genes showed the production of the recombinant TKS and OAC enzymes, detected via Western blot analysis, and the production of cannabinoids precursor (OA) detected using the HPLC/UV spectrum when compared to the wild-type strain. Quantitative analysis revealed significant olivetolic acid accumulation (0.6–2.6 mg/L), demonstrating the successful integration and functionality of the heterologous genes. Furthermore, the introduction of TKS and OAC genes led to the synthesis of novel molecules, potentially expanding the repertoire of bioactive compounds accessible through diatom-based biotechnology. This study demonstrates the successful bioengineering of <i>P. tricornutum</i> with cannabis genes, enabling the production of OA as a precursor for cannabinoid production and the synthesis of novel molecules with potential pharmaceutical applications.
first_indexed 2024-03-09T01:50:38Z
format Article
id doaj.art-316d443c202e447d85f3397e9e838f9c
institution Directory Open Access Journal
issn 1661-6596
1422-0067
language English
last_indexed 2024-03-09T01:50:38Z
publishDate 2023-11-01
publisher MDPI AG
record_format Article
series International Journal of Molecular Sciences
spelling doaj.art-316d443c202e447d85f3397e9e838f9c2023-12-08T15:16:34ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672023-11-0124231662410.3390/ijms242316624Bioengineering of the Marine Diatom <i>Phaeodactylum tricornutum</i> with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic AcidFatima Awwad0Elisa Ines Fantino1Marianne Héneault2Aracely Maribel Diaz-Garza3Natacha Merindol4Alexandre Custeau5Sarah-Eve Gélinas6Fatma Meddeb-Mouelhi7Jessica Li8Jean-François Lemay9Bogumil J. Karas10Isabel Desgagne-Penix11Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaDepartment of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaDepartment of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaDepartment of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaDepartment of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaDepartment of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaDepartment of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaDepartment of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaDepartment of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, CanadaCentre National en Électrochimie et en Technologies Environnementales Inc., 2263 Avenue du Collège, Shawinigan, QC G9N 6V8, CanadaDepartment of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, CanadaDepartment of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, CanadaThe increasing demand for novel natural compounds has prompted the exploration of innovative approaches in bioengineering. This study investigates the bioengineering potential of the marine diatom <i>Phaeodactylum tricornutum</i> through the introduction of cannabis genes, specifically, tetraketide synthase (TKS), and olivetolic acid cyclase (OAC), for the production of the cannabinoid precursor, olivetolic acid (OA). <i>P. tricornutum</i> is a promising biotechnological platform due to its fast growth rate, amenability to genetic manipulation, and ability to produce valuable compounds. Through genetic engineering techniques, we successfully integrated the cannabis genes <i>TKS</i> and <i>OAC</i> into the diatom. <i>P. tricornutum</i> transconjugants expressing these genes showed the production of the recombinant TKS and OAC enzymes, detected via Western blot analysis, and the production of cannabinoids precursor (OA) detected using the HPLC/UV spectrum when compared to the wild-type strain. Quantitative analysis revealed significant olivetolic acid accumulation (0.6–2.6 mg/L), demonstrating the successful integration and functionality of the heterologous genes. Furthermore, the introduction of TKS and OAC genes led to the synthesis of novel molecules, potentially expanding the repertoire of bioactive compounds accessible through diatom-based biotechnology. This study demonstrates the successful bioengineering of <i>P. tricornutum</i> with cannabis genes, enabling the production of OA as a precursor for cannabinoid production and the synthesis of novel molecules with potential pharmaceutical applications.https://www.mdpi.com/1422-0067/24/23/16624diatommetabolic engineeringolivetolic acid cyclasetetraketide synthasesynthetic biologycannabinoids
spellingShingle Fatima Awwad
Elisa Ines Fantino
Marianne Héneault
Aracely Maribel Diaz-Garza
Natacha Merindol
Alexandre Custeau
Sarah-Eve Gélinas
Fatma Meddeb-Mouelhi
Jessica Li
Jean-François Lemay
Bogumil J. Karas
Isabel Desgagne-Penix
Bioengineering of the Marine Diatom <i>Phaeodactylum tricornutum</i> with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic Acid
International Journal of Molecular Sciences
diatom
metabolic engineering
olivetolic acid cyclase
tetraketide synthase
synthetic biology
cannabinoids
title Bioengineering of the Marine Diatom <i>Phaeodactylum tricornutum</i> with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic Acid
title_full Bioengineering of the Marine Diatom <i>Phaeodactylum tricornutum</i> with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic Acid
title_fullStr Bioengineering of the Marine Diatom <i>Phaeodactylum tricornutum</i> with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic Acid
title_full_unstemmed Bioengineering of the Marine Diatom <i>Phaeodactylum tricornutum</i> with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic Acid
title_short Bioengineering of the Marine Diatom <i>Phaeodactylum tricornutum</i> with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic Acid
title_sort bioengineering of the marine diatom i phaeodactylum tricornutum i with cannabis genes enables the production of the cannabinoid precursor olivetolic acid
topic diatom
metabolic engineering
olivetolic acid cyclase
tetraketide synthase
synthetic biology
cannabinoids
url https://www.mdpi.com/1422-0067/24/23/16624
work_keys_str_mv AT fatimaawwad bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid
AT elisainesfantino bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid
AT marianneheneault bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid
AT aracelymaribeldiazgarza bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid
AT natachamerindol bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid
AT alexandrecusteau bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid
AT sarahevegelinas bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid
AT fatmameddebmouelhi bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid
AT jessicali bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid
AT jeanfrancoislemay bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid
AT bogumiljkaras bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid
AT isabeldesgagnepenix bioengineeringofthemarinediatomiphaeodactylumtricornutumiwithcannabisgenesenablestheproductionofthecannabinoidprecursorolivetolicacid