Inefficient intramolecular vibrational energy redistribution for the H + HO2 reaction and negative internal energy dependence for its rate constant

Quasiclassical trajectories (QCT) and newly constructed global potential energy surfaces are used to compute thermal and nonthermal rate constants for the H + HO2 reaction. The thermal QCTs rate constants are up to 50% smaller than transition state theory (TST) rate constants based on the same level...

Full description

Bibliographic Details
Main Authors: Ahren W. Jasper, Daniel R. Moberg, Yujie Tao, Stephen J. Klippenstein, Raghu Sivaramakrishnan
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-10-01
Series:Frontiers in Physics
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fphy.2022.1003010/full
_version_ 1828107044583899136
author Ahren W. Jasper
Daniel R. Moberg
Yujie Tao
Stephen J. Klippenstein
Raghu Sivaramakrishnan
author_facet Ahren W. Jasper
Daniel R. Moberg
Yujie Tao
Stephen J. Klippenstein
Raghu Sivaramakrishnan
author_sort Ahren W. Jasper
collection DOAJ
description Quasiclassical trajectories (QCT) and newly constructed global potential energy surfaces are used to compute thermal and nonthermal rate constants for the H + HO2 reaction. The thermal QCTs rate constants are up to 50% smaller than transition state theory (TST) rate constants based on the same level of electronic structure theory. This reduction is demonstrated to result from inefficient intramolecular vibrational energy redistribution (IVR) in the transient H2O2 well, with a significant fraction of trajectories that reach the H2O2 well promptly dissociating back to reactants instead of via the heavily statistically favored 2OH channel. The nonstatistical reduction factor, κIVR, that quantifies this effect is shown to increase in importance with temperature, with κIVR = 0.81 at 300 K and 0.47 at 2500 K. Finally, we show that inefficient IVR causes H + HO2 rate constants mediated by H2O2 to depend inversely on the initial vibrational excitation of HO2.
first_indexed 2024-04-11T10:26:48Z
format Article
id doaj.art-317020ce94524cab86f742097a585a58
institution Directory Open Access Journal
issn 2296-424X
language English
last_indexed 2024-04-11T10:26:48Z
publishDate 2022-10-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Physics
spelling doaj.art-317020ce94524cab86f742097a585a582022-12-22T04:29:34ZengFrontiers Media S.A.Frontiers in Physics2296-424X2022-10-011010.3389/fphy.2022.10030101003010Inefficient intramolecular vibrational energy redistribution for the H + HO2 reaction and negative internal energy dependence for its rate constantAhren W. JasperDaniel R. MobergYujie TaoStephen J. KlippensteinRaghu SivaramakrishnanQuasiclassical trajectories (QCT) and newly constructed global potential energy surfaces are used to compute thermal and nonthermal rate constants for the H + HO2 reaction. The thermal QCTs rate constants are up to 50% smaller than transition state theory (TST) rate constants based on the same level of electronic structure theory. This reduction is demonstrated to result from inefficient intramolecular vibrational energy redistribution (IVR) in the transient H2O2 well, with a significant fraction of trajectories that reach the H2O2 well promptly dissociating back to reactants instead of via the heavily statistically favored 2OH channel. The nonstatistical reduction factor, κIVR, that quantifies this effect is shown to increase in importance with temperature, with κIVR = 0.81 at 300 K and 0.47 at 2500 K. Finally, we show that inefficient IVR causes H + HO2 rate constants mediated by H2O2 to depend inversely on the initial vibrational excitation of HO2.https://www.frontiersin.org/articles/10.3389/fphy.2022.1003010/fulltransition state theory (TST)intramolecular vibrational energy redistribution (IVR)quasiclassical trajectory (QCT)nonthermal kineticsH2/O2
spellingShingle Ahren W. Jasper
Daniel R. Moberg
Yujie Tao
Stephen J. Klippenstein
Raghu Sivaramakrishnan
Inefficient intramolecular vibrational energy redistribution for the H + HO2 reaction and negative internal energy dependence for its rate constant
Frontiers in Physics
transition state theory (TST)
intramolecular vibrational energy redistribution (IVR)
quasiclassical trajectory (QCT)
nonthermal kinetics
H2/O2
title Inefficient intramolecular vibrational energy redistribution for the H + HO2 reaction and negative internal energy dependence for its rate constant
title_full Inefficient intramolecular vibrational energy redistribution for the H + HO2 reaction and negative internal energy dependence for its rate constant
title_fullStr Inefficient intramolecular vibrational energy redistribution for the H + HO2 reaction and negative internal energy dependence for its rate constant
title_full_unstemmed Inefficient intramolecular vibrational energy redistribution for the H + HO2 reaction and negative internal energy dependence for its rate constant
title_short Inefficient intramolecular vibrational energy redistribution for the H + HO2 reaction and negative internal energy dependence for its rate constant
title_sort inefficient intramolecular vibrational energy redistribution for the h ho2 reaction and negative internal energy dependence for its rate constant
topic transition state theory (TST)
intramolecular vibrational energy redistribution (IVR)
quasiclassical trajectory (QCT)
nonthermal kinetics
H2/O2
url https://www.frontiersin.org/articles/10.3389/fphy.2022.1003010/full
work_keys_str_mv AT ahrenwjasper inefficientintramolecularvibrationalenergyredistributionforthehho2reactionandnegativeinternalenergydependenceforitsrateconstant
AT danielrmoberg inefficientintramolecularvibrationalenergyredistributionforthehho2reactionandnegativeinternalenergydependenceforitsrateconstant
AT yujietao inefficientintramolecularvibrationalenergyredistributionforthehho2reactionandnegativeinternalenergydependenceforitsrateconstant
AT stephenjklippenstein inefficientintramolecularvibrationalenergyredistributionforthehho2reactionandnegativeinternalenergydependenceforitsrateconstant
AT raghusivaramakrishnan inefficientintramolecularvibrationalenergyredistributionforthehho2reactionandnegativeinternalenergydependenceforitsrateconstant