Design of a Weighted-Rotor Energy Harvester Based on Dynamic Analysis and Optimization of Circular Halbach Array Magnetic Disk

This paper proposes the design of a weighted-rotor energy harvester (WREH) in which the oscillation is caused by the periodic change of the tangential component of gravity, to harvest kinetic energy from a rotating wheel. When a WREH is designed with a suitable characteristic length, the rotor’s nat...

Full description

Bibliographic Details
Main Authors: Yu-Jen Wang, Yu-Ti Hao, Hao-Yu Lin
Format: Article
Language:English
Published: MDPI AG 2015-03-01
Series:Micromachines
Subjects:
Online Access:http://www.mdpi.com/2072-666X/6/3/375
Description
Summary:This paper proposes the design of a weighted-rotor energy harvester (WREH) in which the oscillation is caused by the periodic change of the tangential component of gravity, to harvest kinetic energy from a rotating wheel. When a WREH is designed with a suitable characteristic length, the rotor’s natural frequency changes according to the wheel rotation speed and the rotor oscillates at a wide angle and high angular velocity to generate a large amount of power. The magnetic disk is designed according to an optimized circular Halbach array. The optimized circular Halbach array magnetic disk provides the largest induced EMF for different sector-angle ratios for the same magnetic disk volume. This study examined the output voltage and power by considering the constant and accelerating plate-rotation speeds, respectively. This paper discusses the effects of the angular acceleration speed of a rotating wheel corresponding to the dynamic behaviors of a weighted rotor. The average output power is 399 to 535 microwatts at plate-rotation speeds from 300 to 500 rpm, enabling the WREH to be a suitable power source for a tire-pressure monitoring system.
ISSN:2072-666X