Odonata, Coleoptera, and Heteroptera (OCH) Trait-Based Biomonitoring of Rivers within the Northwestern Rif of Morocco: Exploring the Responses of Traits to Prevailing Environmental Gradients

This study aimed to determine the impact of various pressures on the functional composition of OCH (Odonata, Coleoptera, and Heteroptera) in streams within the northwest Rif region of Morocco. We examined how OCH traits respond to human-induced pressures in selected stream sites in Morocco’s northwe...

Full description

Bibliographic Details
Main Authors: Sara El Yaagoubi, Augustine Ovie Edegbene, Mohamed El Haissoufi, Rihab Harrak, Majida El Alami
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Ecologies
Subjects:
Online Access:https://www.mdpi.com/2673-4133/5/1/9
Description
Summary:This study aimed to determine the impact of various pressures on the functional composition of OCH (Odonata, Coleoptera, and Heteroptera) in streams within the northwest Rif region of Morocco. We examined how OCH traits respond to human-induced pressures in selected stream sites in Morocco’s northwestern Rif region. OCH specimens were collected from 36 sites using a Surber sampler with dimension of 20 × 20 cm and mesh size of 500 µm over the course of two years, from 2021 to 2023. We measured physico-chemical and hydraulic parameters such as temperature, pH, DO, and NO-3. Sixty-seven trait attributes from 11 trait classes were assigned to the collected OCH taxa at the family level. Following the delineation of sites along the gradient of impacts in the study area, we categorized 7 sites as slightly impacted sites (SISs), 19 sites as moderately impacted sites (MISs), and 10 sites as heavily impacted sites (HISs). We successfully identified and categorized the traits as either vulnerable or tolerant based on RLQ models. Traits such as reproductive cycles per year and tegument respiration, which were positively correlated with SISs in the RLQ model and also positively correlated with depth and chlorine, were identified as vulnerable traits. Crawling locomotion and full water swimming were identified as tolerant traits. The distribution patterns of the OCH taxa revealed a robust correlation between the taxa and the sampling sites. Notably, taxa such as Nepidae, Naucoridae, and Corixidae exhibited widespread distribution and a strong association with the SISs. On the other hand, traits related to living macroinvertebrate food sources and reproduction in vegetation, specifically clutches, exhibited a negative correlation with total dissolved solids. Incorporating OCH functional traits into biomonitoring programs allows for a more comprehensive assessment of river ecosystems. This approach provides a nuanced understanding of how different stressors impact the community composition and overall ecological health.
ISSN:2673-4133