Computer models of hydraulic systems of district heating
A mathematical and computer model of a district heating network fed by two heat sources located at significantly different elevation marks has been developed. The model is based on the electrohydraulic analogy of electric current spread in conductors and liquid pressure spread in pipelines, which ar...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2018-01-01
|
Series: | MATEC Web of Conferences |
Online Access: | https://doi.org/10.1051/matecconf/201819302028 |
Summary: | A mathematical and computer model of a district heating network fed by two heat sources located at significantly different elevation marks has been developed. The model is based on the electrohydraulic analogy of electric current spread in conductors and liquid pressure spread in pipelines, which are described by the same equations. In particular, the first and second Kirchhoff’s laws used in the calculation of electrical networks are applied to calculate the velocities and pressures in a complex multi-ring pipeline system. In order to maximize the approximation of the computer model to the real hydraulic network (in resistance to the process of heating agent flow), the method of automatic identification of the model is applied. This method is an iterative process of changing the hydraulic resistances in pipelines of the model in such a way that the results obtained from the calculations would have the least differences from the experimental data. The accuracy of identification depending on the number of points with known experimental data is 3 – 5%. |
---|---|
ISSN: | 2261-236X |