Global behavior of positive solutions for some semipositone fourth-order problems

Abstract In this paper, we study the global behavior of positive solutions of fourth-order boundary value problems {u′′′′=λf(x,u),x∈(0,1),u(0)=u(1)=u″(0)=u″(1)=0, $$ \textstyle\begin{cases} u''''=\lambda f(x,u), \quad x\in (0,1), \\ u(0)=u(1)=u''(0)=u''(1)=0,...

Full description

Bibliographic Details
Main Authors: Dongliang Yan, Ruyun Ma
Format: Article
Language:English
Published: SpringerOpen 2018-12-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-018-1904-4
_version_ 1817998583747575808
author Dongliang Yan
Ruyun Ma
author_facet Dongliang Yan
Ruyun Ma
author_sort Dongliang Yan
collection DOAJ
description Abstract In this paper, we study the global behavior of positive solutions of fourth-order boundary value problems {u′′′′=λf(x,u),x∈(0,1),u(0)=u(1)=u″(0)=u″(1)=0, $$ \textstyle\begin{cases} u''''=\lambda f(x,u), \quad x\in (0,1), \\ u(0)=u(1)=u''(0)=u''(1)=0, \end{cases} $$ where f:[0,1]×R+→R $f: [0,1]\times \mathbb{R^{+}} \to \mathbb{R}$ is a continuous function with f(x,0)<0 $f(x,0)<0$ in (0,1) $(0, 1)$, and λ>0 $\lambda >0$. The proof of our main results are based upon bifurcation techniques.
first_indexed 2024-04-14T02:55:29Z
format Article
id doaj.art-31ac3c94480d42bba87c462c8afdb5c7
institution Directory Open Access Journal
issn 1687-1847
language English
last_indexed 2024-04-14T02:55:29Z
publishDate 2018-12-01
publisher SpringerOpen
record_format Article
series Advances in Difference Equations
spelling doaj.art-31ac3c94480d42bba87c462c8afdb5c72022-12-22T02:16:07ZengSpringerOpenAdvances in Difference Equations1687-18472018-12-012018111410.1186/s13662-018-1904-4Global behavior of positive solutions for some semipositone fourth-order problemsDongliang Yan0Ruyun Ma1Department of Mathematics, Northwest Normal UniversityDepartment of Mathematics, Northwest Normal UniversityAbstract In this paper, we study the global behavior of positive solutions of fourth-order boundary value problems {u′′′′=λf(x,u),x∈(0,1),u(0)=u(1)=u″(0)=u″(1)=0, $$ \textstyle\begin{cases} u''''=\lambda f(x,u), \quad x\in (0,1), \\ u(0)=u(1)=u''(0)=u''(1)=0, \end{cases} $$ where f:[0,1]×R+→R $f: [0,1]\times \mathbb{R^{+}} \to \mathbb{R}$ is a continuous function with f(x,0)<0 $f(x,0)<0$ in (0,1) $(0, 1)$, and λ>0 $\lambda >0$. The proof of our main results are based upon bifurcation techniques.http://link.springer.com/article/10.1186/s13662-018-1904-434B1834B1634B2547H11
spellingShingle Dongliang Yan
Ruyun Ma
Global behavior of positive solutions for some semipositone fourth-order problems
Advances in Difference Equations
34B18
34B16
34B25
47H11
title Global behavior of positive solutions for some semipositone fourth-order problems
title_full Global behavior of positive solutions for some semipositone fourth-order problems
title_fullStr Global behavior of positive solutions for some semipositone fourth-order problems
title_full_unstemmed Global behavior of positive solutions for some semipositone fourth-order problems
title_short Global behavior of positive solutions for some semipositone fourth-order problems
title_sort global behavior of positive solutions for some semipositone fourth order problems
topic 34B18
34B16
34B25
47H11
url http://link.springer.com/article/10.1186/s13662-018-1904-4
work_keys_str_mv AT dongliangyan globalbehaviorofpositivesolutionsforsomesemipositonefourthorderproblems
AT ruyunma globalbehaviorofpositivesolutionsforsomesemipositonefourthorderproblems