Automated Conflict Management Framework Development for Autonomous Aerial and Ground Vehicles

The number of aerial- and ground-based unmanned vehicles and operations is expected to significantly expand in the near future. While aviation traditionally has an excellent safety record in managing conflicts, the current approaches will not be able to provide safe and efficient operations in the f...

Full description

Bibliographic Details
Main Authors: David Sziroczák, Daniel Rohács
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/24/8344
Description
Summary:The number of aerial- and ground-based unmanned vehicles and operations is expected to significantly expand in the near future. While aviation traditionally has an excellent safety record in managing conflicts, the current approaches will not be able to provide safe and efficient operations in the future. This paper presents the development of a novel framework integrating autonomous aerial and ground vehicles to facilitate short- and mid-term tactical conflict management. The methodology presents the development of a modular web service framework to develop new conflict management algorithms. This new framework is aimed at managing urban and peri-urban traffic of unmanned ground vehicles and assisting the introduction of urban air mobility into the same framework. A set of high-level system requirements is defined. The incremental development of two versions of the system prototype is presented. The discussions highlight the lessons learnt while implementing and testing the conflict management system and the introduced version of the stop-and-go resolution algorithm and defines the identified future development directions. Operation of the system was successfully demonstrated using real hardware. The developed framework implements short- and mid-term conflict management methodologies in a safe, resource efficient and scalable manner and can be used for the further development and the evaluation of various methods integrating aerial- and ground-based autonomous vehicles.
ISSN:1996-1073