Simulation of Dissipative Hybrid Nanofluid (PEG-Water + ZrO<sub>2</sub> + MgO) Flow by a Curved Shrinking Sheet with Thermal Radiation and Higher Order Chemical Reaction

The heat transmission capabilities of hybrid nanofluids are superior to those of mono nanofluids. In addition to solar collectors and military equipment, they may be found in a number of areas including heat exchanger, automotive industry, transformer cooling and electronic cooling. The purpose of t...

Full description

Bibliographic Details
Main Authors: Gopinath Veeram, Pasam Poojitha, Harika Katta, Sanakkayala Hemalatha, Macherla Jayachandra Babu, Chakravarthula S. K. Raju, Nehad Ali Shah, Se-Jin Yook
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/10/1706
Description
Summary:The heat transmission capabilities of hybrid nanofluids are superior to those of mono nanofluids. In addition to solar collectors and military equipment, they may be found in a number of areas including heat exchanger, automotive industry, transformer cooling and electronic cooling. The purpose of this study was to evaluate the significance of the higher order chemical reaction parameter on the radiative flow of hybrid nanofluid (polyethylene glycol (PEG)–water combination: base fluid and zirconium dioxide, magnesium oxide: nanoparticles) via a curved shrinking sheet with viscous dissipation. Flow-driven equations were transformed into nonlinear ODEs using appropriate similarity transmutations, and then solved using the bvp4c solver (MATLAB built-in function). The results of two scenarios, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>E</mi><mi>G</mi><mo>−</mo><mi>W</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>r</mi><mo>+</mo><mi>Z</mi><mi>r</mi><msub><mi>O</mi><mn>2</mn></msub><mo>+</mo><mi>M</mi><mi>g</mi><mi>O</mi></mrow></semantics></math></inline-formula> (hybrid nanofluid) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>E</mi><mi>G</mi><mo>−</mo><mi>W</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>r</mi><mo>+</mo><mi>Z</mi><mi>r</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>, (nanofluid) are reported. In order to draw important inferences about physical features, such as heat transfer rate, a correlation coefficient was used. The main findings of this study were that curvature parameter lowers fluid velocity, and Eckert number increases the temperature of fluid. It was observed that the volume fraction of nanoparticles enhances the skin friction coefficient and curvature parameter lessens the same. It was noticed that when curvature parameter (<i>K</i>) takes input in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.5</mn><mo>≤</mo><mi>K</mi><mo>≤</mo><mn>2.5</mn></mrow></semantics></math></inline-formula>, the skin friction coefficient decreases at a rate of 1.46633 (i.e., 146.633%) (in the case of hybrid nanofluid) and 1.11236 (i.e., 111.236%) (in the case of nanofluid) per unit value of curvature parameter. Increasing rates in the skin friction parameter were 3.481179 (i.e., 348.1179%) (in the case of hybrid nanofluid) and 2.745679 (in the case of nanofluid) when the volume fraction of nanoparticle (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula>) takes input in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><msub><mi>ϕ</mi><mn>1</mn></msub><mo>≤</mo><mn>0.2</mn></mrow></semantics></math></inline-formula>. It was detected that, when Eckert number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mi>E</mi><mrow><mi>c</mi><mi>k</mi></mrow></msub></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> increases, Nusselt number decreases. The decrement rates were observed as 1.41148 (i.e., 141.148%) (in the case of hybrid nanofluid) and 1.15337 (i.e., 153.337%) (in the case of nanofluid) when Eckert number takes input in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><msub><mi>E</mi><mrow><mi>c</mi><mi>k</mi></mrow></msub><mo>≤</mo><mn>0.2</mn></mrow></semantics></math></inline-formula>. In case of hybrid nanofluid, it was discovered that the mass transfer rate increases at a rate of 1.497214 (i.e., 149.7214%) when chemical reaction <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mi>K</mi><mi>r</mi></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> takes input in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>K</mi><mi>r</mi><mo>≤</mo><mn>0.2</mn></mrow></semantics></math></inline-formula>. In addition, we checked our findings against those of other researchers and discovered a respectable degree of agreement.
ISSN:2227-7390