Simulation of Dissipative Hybrid Nanofluid (PEG-Water + ZrO<sub>2</sub> + MgO) Flow by a Curved Shrinking Sheet with Thermal Radiation and Higher Order Chemical Reaction

The heat transmission capabilities of hybrid nanofluids are superior to those of mono nanofluids. In addition to solar collectors and military equipment, they may be found in a number of areas including heat exchanger, automotive industry, transformer cooling and electronic cooling. The purpose of t...

Full description

Bibliographic Details
Main Authors: Gopinath Veeram, Pasam Poojitha, Harika Katta, Sanakkayala Hemalatha, Macherla Jayachandra Babu, Chakravarthula S. K. Raju, Nehad Ali Shah, Se-Jin Yook
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/10/1706
_version_ 1797498109004087296
author Gopinath Veeram
Pasam Poojitha
Harika Katta
Sanakkayala Hemalatha
Macherla Jayachandra Babu
Chakravarthula S. K. Raju
Nehad Ali Shah
Se-Jin Yook
author_facet Gopinath Veeram
Pasam Poojitha
Harika Katta
Sanakkayala Hemalatha
Macherla Jayachandra Babu
Chakravarthula S. K. Raju
Nehad Ali Shah
Se-Jin Yook
author_sort Gopinath Veeram
collection DOAJ
description The heat transmission capabilities of hybrid nanofluids are superior to those of mono nanofluids. In addition to solar collectors and military equipment, they may be found in a number of areas including heat exchanger, automotive industry, transformer cooling and electronic cooling. The purpose of this study was to evaluate the significance of the higher order chemical reaction parameter on the radiative flow of hybrid nanofluid (polyethylene glycol (PEG)–water combination: base fluid and zirconium dioxide, magnesium oxide: nanoparticles) via a curved shrinking sheet with viscous dissipation. Flow-driven equations were transformed into nonlinear ODEs using appropriate similarity transmutations, and then solved using the bvp4c solver (MATLAB built-in function). The results of two scenarios, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>E</mi><mi>G</mi><mo>−</mo><mi>W</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>r</mi><mo>+</mo><mi>Z</mi><mi>r</mi><msub><mi>O</mi><mn>2</mn></msub><mo>+</mo><mi>M</mi><mi>g</mi><mi>O</mi></mrow></semantics></math></inline-formula> (hybrid nanofluid) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>E</mi><mi>G</mi><mo>−</mo><mi>W</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>r</mi><mo>+</mo><mi>Z</mi><mi>r</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>, (nanofluid) are reported. In order to draw important inferences about physical features, such as heat transfer rate, a correlation coefficient was used. The main findings of this study were that curvature parameter lowers fluid velocity, and Eckert number increases the temperature of fluid. It was observed that the volume fraction of nanoparticles enhances the skin friction coefficient and curvature parameter lessens the same. It was noticed that when curvature parameter (<i>K</i>) takes input in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.5</mn><mo>≤</mo><mi>K</mi><mo>≤</mo><mn>2.5</mn></mrow></semantics></math></inline-formula>, the skin friction coefficient decreases at a rate of 1.46633 (i.e., 146.633%) (in the case of hybrid nanofluid) and 1.11236 (i.e., 111.236%) (in the case of nanofluid) per unit value of curvature parameter. Increasing rates in the skin friction parameter were 3.481179 (i.e., 348.1179%) (in the case of hybrid nanofluid) and 2.745679 (in the case of nanofluid) when the volume fraction of nanoparticle (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula>) takes input in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><msub><mi>ϕ</mi><mn>1</mn></msub><mo>≤</mo><mn>0.2</mn></mrow></semantics></math></inline-formula>. It was detected that, when Eckert number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mi>E</mi><mrow><mi>c</mi><mi>k</mi></mrow></msub></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> increases, Nusselt number decreases. The decrement rates were observed as 1.41148 (i.e., 141.148%) (in the case of hybrid nanofluid) and 1.15337 (i.e., 153.337%) (in the case of nanofluid) when Eckert number takes input in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><msub><mi>E</mi><mrow><mi>c</mi><mi>k</mi></mrow></msub><mo>≤</mo><mn>0.2</mn></mrow></semantics></math></inline-formula>. In case of hybrid nanofluid, it was discovered that the mass transfer rate increases at a rate of 1.497214 (i.e., 149.7214%) when chemical reaction <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mi>K</mi><mi>r</mi></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> takes input in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>K</mi><mi>r</mi><mo>≤</mo><mn>0.2</mn></mrow></semantics></math></inline-formula>. In addition, we checked our findings against those of other researchers and discovered a respectable degree of agreement.
first_indexed 2024-03-10T03:28:46Z
format Article
id doaj.art-31b504d363f549019859d315132cab33
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T03:28:46Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-31b504d363f549019859d315132cab332023-11-23T12:01:13ZengMDPI AGMathematics2227-73902022-05-011010170610.3390/math10101706Simulation of Dissipative Hybrid Nanofluid (PEG-Water + ZrO<sub>2</sub> + MgO) Flow by a Curved Shrinking Sheet with Thermal Radiation and Higher Order Chemical ReactionGopinath Veeram0Pasam Poojitha1Harika Katta2Sanakkayala Hemalatha3Macherla Jayachandra Babu4Chakravarthula S. K. Raju5Nehad Ali Shah6Se-Jin Yook7Department of Mathematics, Chinthalapati Satyavathi Devi St. Theresa’s College for Women (A), Eluru 534003, Andhra Pradesh, IndiaDepartment of Mathematics, Chinthalapati Satyavathi Devi St. Theresa’s College for Women (A), Eluru 534003, Andhra Pradesh, IndiaDepartment of Mathematics, Chinthalapati Satyavathi Devi St. Theresa’s College for Women (A), Eluru 534003, Andhra Pradesh, IndiaDepartment of Mathematics, Sir Cattamanchi Ramalinga Reddy College, Eluru 534007, Andhra Pradesh, IndiaDepartment of Mathematics, Swamy Vidyaprakasananda Government College, Srikalahasti 517644, Andhra Pradesh, IndiaSchool of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, KoreaDepartment of Mechanical Engineering, Sejong University, Seoul 05006, KoreaSchool of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, KoreaThe heat transmission capabilities of hybrid nanofluids are superior to those of mono nanofluids. In addition to solar collectors and military equipment, they may be found in a number of areas including heat exchanger, automotive industry, transformer cooling and electronic cooling. The purpose of this study was to evaluate the significance of the higher order chemical reaction parameter on the radiative flow of hybrid nanofluid (polyethylene glycol (PEG)–water combination: base fluid and zirconium dioxide, magnesium oxide: nanoparticles) via a curved shrinking sheet with viscous dissipation. Flow-driven equations were transformed into nonlinear ODEs using appropriate similarity transmutations, and then solved using the bvp4c solver (MATLAB built-in function). The results of two scenarios, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>E</mi><mi>G</mi><mo>−</mo><mi>W</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>r</mi><mo>+</mo><mi>Z</mi><mi>r</mi><msub><mi>O</mi><mn>2</mn></msub><mo>+</mo><mi>M</mi><mi>g</mi><mi>O</mi></mrow></semantics></math></inline-formula> (hybrid nanofluid) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>E</mi><mi>G</mi><mo>−</mo><mi>W</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>r</mi><mo>+</mo><mi>Z</mi><mi>r</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>, (nanofluid) are reported. In order to draw important inferences about physical features, such as heat transfer rate, a correlation coefficient was used. The main findings of this study were that curvature parameter lowers fluid velocity, and Eckert number increases the temperature of fluid. It was observed that the volume fraction of nanoparticles enhances the skin friction coefficient and curvature parameter lessens the same. It was noticed that when curvature parameter (<i>K</i>) takes input in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.5</mn><mo>≤</mo><mi>K</mi><mo>≤</mo><mn>2.5</mn></mrow></semantics></math></inline-formula>, the skin friction coefficient decreases at a rate of 1.46633 (i.e., 146.633%) (in the case of hybrid nanofluid) and 1.11236 (i.e., 111.236%) (in the case of nanofluid) per unit value of curvature parameter. Increasing rates in the skin friction parameter were 3.481179 (i.e., 348.1179%) (in the case of hybrid nanofluid) and 2.745679 (in the case of nanofluid) when the volume fraction of nanoparticle (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula>) takes input in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><msub><mi>ϕ</mi><mn>1</mn></msub><mo>≤</mo><mn>0.2</mn></mrow></semantics></math></inline-formula>. It was detected that, when Eckert number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mi>E</mi><mrow><mi>c</mi><mi>k</mi></mrow></msub></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> increases, Nusselt number decreases. The decrement rates were observed as 1.41148 (i.e., 141.148%) (in the case of hybrid nanofluid) and 1.15337 (i.e., 153.337%) (in the case of nanofluid) when Eckert number takes input in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><msub><mi>E</mi><mrow><mi>c</mi><mi>k</mi></mrow></msub><mo>≤</mo><mn>0.2</mn></mrow></semantics></math></inline-formula>. In case of hybrid nanofluid, it was discovered that the mass transfer rate increases at a rate of 1.497214 (i.e., 149.7214%) when chemical reaction <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mi>K</mi><mi>r</mi></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> takes input in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>K</mi><mi>r</mi><mo>≤</mo><mn>0.2</mn></mrow></semantics></math></inline-formula>. In addition, we checked our findings against those of other researchers and discovered a respectable degree of agreement.https://www.mdpi.com/2227-7390/10/10/1706hybrid nanofluidcurved shrinking sheetthermal radiationEckert numbercorrelation coefficientchemical reaction
spellingShingle Gopinath Veeram
Pasam Poojitha
Harika Katta
Sanakkayala Hemalatha
Macherla Jayachandra Babu
Chakravarthula S. K. Raju
Nehad Ali Shah
Se-Jin Yook
Simulation of Dissipative Hybrid Nanofluid (PEG-Water + ZrO<sub>2</sub> + MgO) Flow by a Curved Shrinking Sheet with Thermal Radiation and Higher Order Chemical Reaction
Mathematics
hybrid nanofluid
curved shrinking sheet
thermal radiation
Eckert number
correlation coefficient
chemical reaction
title Simulation of Dissipative Hybrid Nanofluid (PEG-Water + ZrO<sub>2</sub> + MgO) Flow by a Curved Shrinking Sheet with Thermal Radiation and Higher Order Chemical Reaction
title_full Simulation of Dissipative Hybrid Nanofluid (PEG-Water + ZrO<sub>2</sub> + MgO) Flow by a Curved Shrinking Sheet with Thermal Radiation and Higher Order Chemical Reaction
title_fullStr Simulation of Dissipative Hybrid Nanofluid (PEG-Water + ZrO<sub>2</sub> + MgO) Flow by a Curved Shrinking Sheet with Thermal Radiation and Higher Order Chemical Reaction
title_full_unstemmed Simulation of Dissipative Hybrid Nanofluid (PEG-Water + ZrO<sub>2</sub> + MgO) Flow by a Curved Shrinking Sheet with Thermal Radiation and Higher Order Chemical Reaction
title_short Simulation of Dissipative Hybrid Nanofluid (PEG-Water + ZrO<sub>2</sub> + MgO) Flow by a Curved Shrinking Sheet with Thermal Radiation and Higher Order Chemical Reaction
title_sort simulation of dissipative hybrid nanofluid peg water zro sub 2 sub mgo flow by a curved shrinking sheet with thermal radiation and higher order chemical reaction
topic hybrid nanofluid
curved shrinking sheet
thermal radiation
Eckert number
correlation coefficient
chemical reaction
url https://www.mdpi.com/2227-7390/10/10/1706
work_keys_str_mv AT gopinathveeram simulationofdissipativehybridnanofluidpegwaterzrosub2submgoflowbyacurvedshrinkingsheetwiththermalradiationandhigherorderchemicalreaction
AT pasampoojitha simulationofdissipativehybridnanofluidpegwaterzrosub2submgoflowbyacurvedshrinkingsheetwiththermalradiationandhigherorderchemicalreaction
AT harikakatta simulationofdissipativehybridnanofluidpegwaterzrosub2submgoflowbyacurvedshrinkingsheetwiththermalradiationandhigherorderchemicalreaction
AT sanakkayalahemalatha simulationofdissipativehybridnanofluidpegwaterzrosub2submgoflowbyacurvedshrinkingsheetwiththermalradiationandhigherorderchemicalreaction
AT macherlajayachandrababu simulationofdissipativehybridnanofluidpegwaterzrosub2submgoflowbyacurvedshrinkingsheetwiththermalradiationandhigherorderchemicalreaction
AT chakravarthulaskraju simulationofdissipativehybridnanofluidpegwaterzrosub2submgoflowbyacurvedshrinkingsheetwiththermalradiationandhigherorderchemicalreaction
AT nehadalishah simulationofdissipativehybridnanofluidpegwaterzrosub2submgoflowbyacurvedshrinkingsheetwiththermalradiationandhigherorderchemicalreaction
AT sejinyook simulationofdissipativehybridnanofluidpegwaterzrosub2submgoflowbyacurvedshrinkingsheetwiththermalradiationandhigherorderchemicalreaction