Probabilistic Machine Learning for the Authentication of the Protected Designation of Origin of Greek Bottarga from Messolongi: A Generic Methodology to Cope with Very Small Number of Samples

Consumers are increasingly interested in the geographical origin of foodstuff, as an important characteristic of food authenticity and quality. To assure the authenticity of the geographical origin, various methods have been proposed. Stable isotope analysis is a method that has been extensively use...

Full description

Bibliographic Details
Main Authors: George Tsirogiannis, Anna-Akrivi Thomatou, Eleni Psarra, Eleni C. Mazarakioti, Katerina Katerinopoulou, Anastasios Zotos, Achilleas Kontogeorgos, Angelos Patakas, Athanasios Ladavos
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/13/6335
Description
Summary:Consumers are increasingly interested in the geographical origin of foodstuff, as an important characteristic of food authenticity and quality. To assure the authenticity of the geographical origin, various methods have been proposed. Stable isotope analysis is a method that has been extensively used for products like wine, oil, and meat by using large datasets and analysis. On the other hand, only few studies have been conducted for the discrimination of seafood origin and especially for mullet roes or bottarga products, and even fewer investigate a small number of samples and datasets. Stable isotopes of Carbon (C), Nitrogen (N), and Sulfur (S) analysis of bottarga samples from four different origins were carried out. The first results show that the stable isotopes ratios of C, N, and S could be used to discriminate the Greek PDO Bottarga (Messolongi) from other similar products by using a probabilistic machine learning methodology. That could use limited sample data to fit/estimate their parameters, while, at the same time, being capable of describing accurately the population and discriminate individual samples regarding their origin.
ISSN:2076-3417