Effects of Modifying Agent and Conductive Hybrid Filler on Butyl Rubber Properties: Mechanical, Thermo-Mechanical, Dynamical and Re-Crosslinking Properties

Ionic crosslinking of bromobutyl rubber (BIIR) composites was prepared using butylimidazole (IM) and ionic liquid (IL), combined with carbon nanotubes (CNT) and conductive carbon black (CCB) to enhance the intrinsic properties and heal ability of the resulting composites. Variation in the BIIR/CNT-C...

Full description

Bibliographic Details
Main Authors: Piyawedee Luangchuang, Tanawat Sornanankul, Yeampon Nakaramontri
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/15/19/4023
Description
Summary:Ionic crosslinking of bromobutyl rubber (BIIR) composites was prepared using butylimidazole (IM) and ionic liquid (IL), combined with carbon nanotubes (CNT) and conductive carbon black (CCB) to enhance the intrinsic properties and heal ability of the resulting composites. Variation in the BIIR/CNT-CCB/IM/IL ratios was investigated to determine the appropriate formulation for healing the composites. Results showed that the mechanical properties were increased until the IM:IL:CNT/CCB ratio reached 1:1:1/1.5, corresponding to the optimal concentration of 5:5:5/7.5 phr. Thermo-oxidative degradation, as indicated using temperature scanning stress relaxation (TSSR), demonstrated the decomposition of the composites at higher temperatures, highlighting the superior resistance provided by the proper formulation of BIIR composites. Additionally, the conditions for the healing procedure were examined by applying pressure, temperature, and time. It was observed that the composites exhibited good elasticity at 0 °C and 60 °C, with a high rate of re-crosslinking achieved under appropriate pressure and temperature conditions. This research aims to develop a formulation suitable for the tire tread and inner liner of commercial car tires together with artificial skin products.
ISSN:2073-4360