An Efficient Chameleon Swarm Algorithm for Economic Load Dispatch Problem
Economic Load Dispatch (ELD) is a complicated and demanding problem for power engineers. ELD relates to the minimization of the economic cost of production, thereby allocating the produced power by each unit in the most possible economic manner. In recent years, emphasis has been laid on minimizatio...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-11-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/21/2770 |
_version_ | 1827678080240451584 |
---|---|
author | Mokhtar Said Ali M. El-Rifaie Mohamed A. Tolba Essam H. Houssein Sanchari Deb |
author_facet | Mokhtar Said Ali M. El-Rifaie Mohamed A. Tolba Essam H. Houssein Sanchari Deb |
author_sort | Mokhtar Said |
collection | DOAJ |
description | Economic Load Dispatch (ELD) is a complicated and demanding problem for power engineers. ELD relates to the minimization of the economic cost of production, thereby allocating the produced power by each unit in the most possible economic manner. In recent years, emphasis has been laid on minimization of emissions, in addition to cost, resulting in the Combined Economic and Emission Dispatch (CEED) problem. The solutions of the ELD and CEED problems are mostly dominated by metaheuristics. The performance of the Chameleon Swarm Algorithm (CSA) for solving the ELD problem was tested in this work. CSA mimics the hunting and food searching mechanism of chameleons. This algorithm takes into account the dynamics of food hunting of the chameleon on trees, deserts, and near swamps. The performance of the aforementioned algorithm was compared with a number of advanced algorithms in solving the ELD and CEED problems, such as Sine Cosine Algorithm (SCA), Grey Wolf Optimization (GWO), and Earth Worm Algorithm (EWA). The simulated results established the efficacy of the proposed CSA algorithm. The power mismatch factor is the main item in ELD problems. The best value of this factor must tend to nearly zero. The CSA algorithm achieves the best power mismatch values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.16</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>13</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.16</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>12</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.28</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>12</mn></mrow></msup></mrow></semantics></math></inline-formula> for demand loads of 700, 1000, and 1200 MW, respectively, of the ELD problem. The CSA algorithm achieves the best power mismatch values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.41</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>13</mn></mrow></msup><mo> </mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>8.92</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>13</mn></mrow></msup><mo> </mo><mi>and</mi><mo> </mo><mn>1.68</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>12</mn></mrow></msup></mrow></semantics></math></inline-formula> for demand loads of 700, 1000, and 1200 MW, respectively, of the CEED problem. Thus, the CSA algorithm was found to be superior to the algorithms compared in this work. |
first_indexed | 2024-03-10T05:56:36Z |
format | Article |
id | doaj.art-31d0ad22f27c47acab74702659596425 |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-10T05:56:36Z |
publishDate | 2021-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-31d0ad22f27c47acab747026595964252023-11-22T21:18:36ZengMDPI AGMathematics2227-73902021-11-01921277010.3390/math9212770An Efficient Chameleon Swarm Algorithm for Economic Load Dispatch ProblemMokhtar Said0Ali M. El-Rifaie1Mohamed A. Tolba2Essam H. Houssein3Sanchari Deb4Electrical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum 43518, EgyptCollege of Engineering and Technology, American University of the Middle East, Egaila 54200, KuwaitNuclear Research Center, Reactors Department, Egyptian Atomic Energy Authority, Cairo 11787, EgyptFaculty of Computers and Information, Minia University, Minia 61519, EgyptVTT Technical Research Centre of Finland Ltd., 02044 Espoo, FinlandEconomic Load Dispatch (ELD) is a complicated and demanding problem for power engineers. ELD relates to the minimization of the economic cost of production, thereby allocating the produced power by each unit in the most possible economic manner. In recent years, emphasis has been laid on minimization of emissions, in addition to cost, resulting in the Combined Economic and Emission Dispatch (CEED) problem. The solutions of the ELD and CEED problems are mostly dominated by metaheuristics. The performance of the Chameleon Swarm Algorithm (CSA) for solving the ELD problem was tested in this work. CSA mimics the hunting and food searching mechanism of chameleons. This algorithm takes into account the dynamics of food hunting of the chameleon on trees, deserts, and near swamps. The performance of the aforementioned algorithm was compared with a number of advanced algorithms in solving the ELD and CEED problems, such as Sine Cosine Algorithm (SCA), Grey Wolf Optimization (GWO), and Earth Worm Algorithm (EWA). The simulated results established the efficacy of the proposed CSA algorithm. The power mismatch factor is the main item in ELD problems. The best value of this factor must tend to nearly zero. The CSA algorithm achieves the best power mismatch values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.16</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>13</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.16</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>12</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.28</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>12</mn></mrow></msup></mrow></semantics></math></inline-formula> for demand loads of 700, 1000, and 1200 MW, respectively, of the ELD problem. The CSA algorithm achieves the best power mismatch values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.41</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>13</mn></mrow></msup><mo> </mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>8.92</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>13</mn></mrow></msup><mo> </mo><mi>and</mi><mo> </mo><mn>1.68</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>12</mn></mrow></msup></mrow></semantics></math></inline-formula> for demand loads of 700, 1000, and 1200 MW, respectively, of the CEED problem. Thus, the CSA algorithm was found to be superior to the algorithms compared in this work.https://www.mdpi.com/2227-7390/9/21/2770chameleon swarm algorithmoptimizationeconomic load dispatchcombined emissioneconomic dispatch |
spellingShingle | Mokhtar Said Ali M. El-Rifaie Mohamed A. Tolba Essam H. Houssein Sanchari Deb An Efficient Chameleon Swarm Algorithm for Economic Load Dispatch Problem Mathematics chameleon swarm algorithm optimization economic load dispatch combined emission economic dispatch |
title | An Efficient Chameleon Swarm Algorithm for Economic Load Dispatch Problem |
title_full | An Efficient Chameleon Swarm Algorithm for Economic Load Dispatch Problem |
title_fullStr | An Efficient Chameleon Swarm Algorithm for Economic Load Dispatch Problem |
title_full_unstemmed | An Efficient Chameleon Swarm Algorithm for Economic Load Dispatch Problem |
title_short | An Efficient Chameleon Swarm Algorithm for Economic Load Dispatch Problem |
title_sort | efficient chameleon swarm algorithm for economic load dispatch problem |
topic | chameleon swarm algorithm optimization economic load dispatch combined emission economic dispatch |
url | https://www.mdpi.com/2227-7390/9/21/2770 |
work_keys_str_mv | AT mokhtarsaid anefficientchameleonswarmalgorithmforeconomicloaddispatchproblem AT alimelrifaie anefficientchameleonswarmalgorithmforeconomicloaddispatchproblem AT mohamedatolba anefficientchameleonswarmalgorithmforeconomicloaddispatchproblem AT essamhhoussein anefficientchameleonswarmalgorithmforeconomicloaddispatchproblem AT sancharideb anefficientchameleonswarmalgorithmforeconomicloaddispatchproblem AT mokhtarsaid efficientchameleonswarmalgorithmforeconomicloaddispatchproblem AT alimelrifaie efficientchameleonswarmalgorithmforeconomicloaddispatchproblem AT mohamedatolba efficientchameleonswarmalgorithmforeconomicloaddispatchproblem AT essamhhoussein efficientchameleonswarmalgorithmforeconomicloaddispatchproblem AT sancharideb efficientchameleonswarmalgorithmforeconomicloaddispatchproblem |