Edge-induced radiation force and torque on a cylindrically-radiating active acoustic source located near a rigid corner-space
This work examines the physical effect of the edge-induced acoustic radiation force and torque on an acoustically radiating infinitely-long circular cylindrical source, located near a rigid corner. Assuming harmonic (linear) radiating waves of the source, vibrating in monopole or dipole radiation mo...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-06-01
|
Series: | Journal of Ocean Engineering and Science |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2468013319300191 |
_version_ | 1818115418120781824 |
---|---|
author | F.G. Mitri |
author_facet | F.G. Mitri |
author_sort | F.G. Mitri |
collection | DOAJ |
description | This work examines the physical effect of the edge-induced acoustic radiation force and torque on an acoustically radiating infinitely-long circular cylindrical source, located near a rigid corner. Assuming harmonic (linear) radiating waves of the source, vibrating in monopole or dipole radiation modes near a rigid corner-space in a non-viscous fluid, the modal series expansion method in cylindrical coordinates, the classical method of images and the translational addition theorem are applied to obtain the mathematical expressions for the radiation force and torque components in exact partial-wave series. Computational results illustrate the theory, and examine some of the conditions where the radiation force and torque components vanish, which has the potential to achieve total motion suppression (i.e., translation or rotation). Furthermore, depending on the size parameter of the source and the distances from the rigid corner space, these physical observables take positive or negative values, anticipating the prediction of pulling/pushing motions toward the corner space, and possible spinning of the source clockwise or counter-clockwise. The present analysis and its results may be useful in some applications related to underwater acoustical oceanographic engineering of submerged objects, cloaking and stealth technology development and the experimental design of elongated unmanned autonomous vehicles or submarines, as well as the manipulation of an active carrier or ultrasound contrast agents of elongated cylindrical shapes near a corner space or chamber walls at a right angle. Keywords: Edge-induced radiation force and torque, Radiation of sound, Rigid corner space, Cylindrical source, Monopole/dipole vibration, Underwater acoustics |
first_indexed | 2024-12-11T04:06:18Z |
format | Article |
id | doaj.art-31d389e6feb044d087c68b1d0888f750 |
institution | Directory Open Access Journal |
issn | 2468-0133 |
language | English |
last_indexed | 2024-12-11T04:06:18Z |
publishDate | 2019-06-01 |
publisher | Elsevier |
record_format | Article |
series | Journal of Ocean Engineering and Science |
spelling | doaj.art-31d389e6feb044d087c68b1d0888f7502022-12-22T01:21:30ZengElsevierJournal of Ocean Engineering and Science2468-01332019-06-0142166172Edge-induced radiation force and torque on a cylindrically-radiating active acoustic source located near a rigid corner-spaceF.G. Mitri0Santa Fe, NM 87508, United StatesThis work examines the physical effect of the edge-induced acoustic radiation force and torque on an acoustically radiating infinitely-long circular cylindrical source, located near a rigid corner. Assuming harmonic (linear) radiating waves of the source, vibrating in monopole or dipole radiation modes near a rigid corner-space in a non-viscous fluid, the modal series expansion method in cylindrical coordinates, the classical method of images and the translational addition theorem are applied to obtain the mathematical expressions for the radiation force and torque components in exact partial-wave series. Computational results illustrate the theory, and examine some of the conditions where the radiation force and torque components vanish, which has the potential to achieve total motion suppression (i.e., translation or rotation). Furthermore, depending on the size parameter of the source and the distances from the rigid corner space, these physical observables take positive or negative values, anticipating the prediction of pulling/pushing motions toward the corner space, and possible spinning of the source clockwise or counter-clockwise. The present analysis and its results may be useful in some applications related to underwater acoustical oceanographic engineering of submerged objects, cloaking and stealth technology development and the experimental design of elongated unmanned autonomous vehicles or submarines, as well as the manipulation of an active carrier or ultrasound contrast agents of elongated cylindrical shapes near a corner space or chamber walls at a right angle. Keywords: Edge-induced radiation force and torque, Radiation of sound, Rigid corner space, Cylindrical source, Monopole/dipole vibration, Underwater acousticshttp://www.sciencedirect.com/science/article/pii/S2468013319300191 |
spellingShingle | F.G. Mitri Edge-induced radiation force and torque on a cylindrically-radiating active acoustic source located near a rigid corner-space Journal of Ocean Engineering and Science |
title | Edge-induced radiation force and torque on a cylindrically-radiating active acoustic source located near a rigid corner-space |
title_full | Edge-induced radiation force and torque on a cylindrically-radiating active acoustic source located near a rigid corner-space |
title_fullStr | Edge-induced radiation force and torque on a cylindrically-radiating active acoustic source located near a rigid corner-space |
title_full_unstemmed | Edge-induced radiation force and torque on a cylindrically-radiating active acoustic source located near a rigid corner-space |
title_short | Edge-induced radiation force and torque on a cylindrically-radiating active acoustic source located near a rigid corner-space |
title_sort | edge induced radiation force and torque on a cylindrically radiating active acoustic source located near a rigid corner space |
url | http://www.sciencedirect.com/science/article/pii/S2468013319300191 |
work_keys_str_mv | AT fgmitri edgeinducedradiationforceandtorqueonacylindricallyradiatingactiveacousticsourcelocatedneararigidcornerspace |