Summary: | Envelope demodulation of vibration signals is surely one of the most successful methods of analysis for highlighting diagnostic information of rolling element bearings incipient faults. From a mathematical perspective, the selection of a proper demodulation band can be regarded as an optimization problem involving a utility function to assess the demodulation performance in a particular band and a scheme to move within the search space of all the possible frequency bands {f, Δf} (center frequency and band size) towards the optimal one. In most of cases, kurtosis-based indices are used to select the proper demodulation band. Nevertheless, to overcome the lack of robustness to non-Gaussian noise, different utility functions can be found in the literature. One of these is the kurtosis of the unbiased autocorrelation of the squared envelope of the filtered signal found in the autogram. These heuristics are usually sufficient to highlight the defect spectral lines in the demodulated signal spectrum (i.e., usually the squared envelope spectrum (SES)), enabling bearings diagnostics. Nevertheless, it is not always the case. In this work, then, posteriori band indicators based on SES defect spectral lines are proposed to assess the general envelope demodulation performance and the goodness of traditional indicators. The Case Western Reserve University bearing dataset is used as a test case.
|