Summary: | The design of longer-lasting products, such as domestic electric appliances, is a key-stone approach of the circular economy to reduce the use of non-reusable materials and the number of wastes to be managed at the end of the product’s life as well as to extend it. The manufacturing of modern electric appliances includes the incorporation of printed circuit boards (PCBs). PCBs provide mechanical support and electrically connect electrical or electronic components using conductive trackpads and other features etched from one or more sheet layers of copper laminated onto and/or between sheet layers of a non-conductive substrate. This paper proposes a PCB maintenance framework, fully compliant with the “Right to Repair” concept, considering the impact of their aging failures based on measurements made on them, as well as the repair and replacement costs of their components. Herein, we present an algorithm that assesses the problem of handling the repair and replacement cost corresponding to specific failures while ensuring that the total cost of repair does not exceed a predefined value. This is achieved through an integer linear programming (ILP) formulation which maximizes the benefit to the life expectancy, <i>Li</i>, of an appliance, constrained by a customer’s limited budget. The proposed methodology is tested with different PCBs and considers different types of appliances. More specifically, two cases concerning PCBs of washing and dishwasher machines are studied to examine the dependency of the solutions on the aging rate of their various components. The simulation results show that considering a medium budget, after 3 years, we can achieve a health benefit of 92.4% for a washing machine’s PCB, while for a dishwasher’s PCB, the health benefit drops to 86.3%.
|