aRgus: Multilevel visualization of non-synonymous single nucleotide variants & advanced pathogenicity score modeling for genetic vulnerability assessment

The widespread use of high-throughput sequencing techniques is leading to a rapidly increasing number of disease-associated variants of unknown significance and candidate genes. Integration of knowledge concerning their genetic, protein as well as functional and conservational aspects is necessary f...

Full description

Bibliographic Details
Main Authors: Julian Schröter, Tal Dattner, Jennifer Hüllein, Alejandra Jayme, Vincent Heuveline, Georg F. Hoffmann, Stefan Kölker, Dominic Lenz, Thomas Opladen, Bernt Popp, Christian P. Schaaf, Christian Staufner, Steffen Syrbe, Sebastian Uhrig, Daniel Hübschmann, Heiko Brennenstuhl
Format: Article
Language:English
Published: Elsevier 2023-01-01
Series:Computational and Structural Biotechnology Journal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2001037023000235
_version_ 1797384122356727808
author Julian Schröter
Tal Dattner
Jennifer Hüllein
Alejandra Jayme
Vincent Heuveline
Georg F. Hoffmann
Stefan Kölker
Dominic Lenz
Thomas Opladen
Bernt Popp
Christian P. Schaaf
Christian Staufner
Steffen Syrbe
Sebastian Uhrig
Daniel Hübschmann
Heiko Brennenstuhl
author_facet Julian Schröter
Tal Dattner
Jennifer Hüllein
Alejandra Jayme
Vincent Heuveline
Georg F. Hoffmann
Stefan Kölker
Dominic Lenz
Thomas Opladen
Bernt Popp
Christian P. Schaaf
Christian Staufner
Steffen Syrbe
Sebastian Uhrig
Daniel Hübschmann
Heiko Brennenstuhl
author_sort Julian Schröter
collection DOAJ
description The widespread use of high-throughput sequencing techniques is leading to a rapidly increasing number of disease-associated variants of unknown significance and candidate genes. Integration of knowledge concerning their genetic, protein as well as functional and conservational aspects is necessary for an exhaustive assessment of their relevance and for prioritization of further clinical and functional studies investigating their role in human disease. To collect the necessary information, a multitude of different databases has to be accessed and data extraction from the original sources commonly is not user-friendly and requires advanced bioinformatics skills. This leads to a decreased data accessibility for a relevant number of potential users such as clinicians, geneticist, and clinical researchers. Here, we present aRgus (https://argus.urz.uni-heidelberg.de/), a standalone webtool for simple extraction and intuitive visualization of multi-layered gene, protein, variant, and variant effect prediction data. aRgus provides interactive exploitation of these data within seconds for any known gene of the human genome. In contrast to existing online platforms for compilation of variant data, aRgus complements visualization of chromosomal exon-intron structure and protein domain annotation with ClinVar and gnomAD variant distributions as well as position-specific variant effect prediction score modeling. aRgus thereby enables timely assessment of protein regions vulnerable to variation with single amino acid resolution and provides numerous applications in variant and protein domain interpretation as well as in the design of in vitro experiments.
first_indexed 2024-03-08T21:30:55Z
format Article
id doaj.art-31fff396829a4de39c3c03926e275ef4
institution Directory Open Access Journal
issn 2001-0370
language English
last_indexed 2024-03-08T21:30:55Z
publishDate 2023-01-01
publisher Elsevier
record_format Article
series Computational and Structural Biotechnology Journal
spelling doaj.art-31fff396829a4de39c3c03926e275ef42023-12-21T07:30:48ZengElsevierComputational and Structural Biotechnology Journal2001-03702023-01-012110771083aRgus: Multilevel visualization of non-synonymous single nucleotide variants & advanced pathogenicity score modeling for genetic vulnerability assessmentJulian Schröter0Tal Dattner1Jennifer Hüllein2Alejandra Jayme3Vincent Heuveline4Georg F. Hoffmann5Stefan Kölker6Dominic Lenz7Thomas Opladen8Bernt Popp9Christian P. Schaaf10Christian Staufner11Steffen Syrbe12Sebastian Uhrig13Daniel Hübschmann14Heiko Brennenstuhl15Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120 Heidelberg, GermanyDivision of Neuropediatrics and Metabolic Medicine, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120 Heidelberg, GermanyComputational Oncology, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, D-69120 Heidelberg, GermanyEngineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 205, D-69120 Heidelberg, GermanyEngineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 205, D-69120 Heidelberg, GermanyDivision of Neuropediatrics and Metabolic Medicine, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120 Heidelberg, GermanyDivision of Neuropediatrics and Metabolic Medicine, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120 Heidelberg, GermanyDivision of Neuropediatrics and Metabolic Medicine, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120 Heidelberg, GermanyDivision of Neuropediatrics and Metabolic Medicine, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120 Heidelberg, GermanyInstitute of Human Genetics, University Medical Center Leipzig, Philipp-Rosenthal-Str. 55 (Haus W), D-04103 Leipzig, GermanyInstitute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 440, D-69120 Heidelberg, GermanyDivision of Neuropediatrics and Metabolic Medicine, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120 Heidelberg, GermanyDivision of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120 Heidelberg, GermanyComputational Oncology, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, D-69120 Heidelberg, GermanyComputational Oncology, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Im Neuenheimer Feld 280, D-69120 Heidelberg, GermanyDivision of Neuropediatrics and Metabolic Medicine, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120 Heidelberg, Germany; Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 440, D-69120 Heidelberg, Germany; Corresponding author at: Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 440, D-69120 Heidelberg, Germany.The widespread use of high-throughput sequencing techniques is leading to a rapidly increasing number of disease-associated variants of unknown significance and candidate genes. Integration of knowledge concerning their genetic, protein as well as functional and conservational aspects is necessary for an exhaustive assessment of their relevance and for prioritization of further clinical and functional studies investigating their role in human disease. To collect the necessary information, a multitude of different databases has to be accessed and data extraction from the original sources commonly is not user-friendly and requires advanced bioinformatics skills. This leads to a decreased data accessibility for a relevant number of potential users such as clinicians, geneticist, and clinical researchers. Here, we present aRgus (https://argus.urz.uni-heidelberg.de/), a standalone webtool for simple extraction and intuitive visualization of multi-layered gene, protein, variant, and variant effect prediction data. aRgus provides interactive exploitation of these data within seconds for any known gene of the human genome. In contrast to existing online platforms for compilation of variant data, aRgus complements visualization of chromosomal exon-intron structure and protein domain annotation with ClinVar and gnomAD variant distributions as well as position-specific variant effect prediction score modeling. aRgus thereby enables timely assessment of protein regions vulnerable to variation with single amino acid resolution and provides numerous applications in variant and protein domain interpretation as well as in the design of in vitro experiments.http://www.sciencedirect.com/science/article/pii/S2001037023000235Pathogenicity scoresVariant effect predictionVariant assessmentComputational genetics
spellingShingle Julian Schröter
Tal Dattner
Jennifer Hüllein
Alejandra Jayme
Vincent Heuveline
Georg F. Hoffmann
Stefan Kölker
Dominic Lenz
Thomas Opladen
Bernt Popp
Christian P. Schaaf
Christian Staufner
Steffen Syrbe
Sebastian Uhrig
Daniel Hübschmann
Heiko Brennenstuhl
aRgus: Multilevel visualization of non-synonymous single nucleotide variants & advanced pathogenicity score modeling for genetic vulnerability assessment
Computational and Structural Biotechnology Journal
Pathogenicity scores
Variant effect prediction
Variant assessment
Computational genetics
title aRgus: Multilevel visualization of non-synonymous single nucleotide variants & advanced pathogenicity score modeling for genetic vulnerability assessment
title_full aRgus: Multilevel visualization of non-synonymous single nucleotide variants & advanced pathogenicity score modeling for genetic vulnerability assessment
title_fullStr aRgus: Multilevel visualization of non-synonymous single nucleotide variants & advanced pathogenicity score modeling for genetic vulnerability assessment
title_full_unstemmed aRgus: Multilevel visualization of non-synonymous single nucleotide variants & advanced pathogenicity score modeling for genetic vulnerability assessment
title_short aRgus: Multilevel visualization of non-synonymous single nucleotide variants & advanced pathogenicity score modeling for genetic vulnerability assessment
title_sort argus multilevel visualization of non synonymous single nucleotide variants amp advanced pathogenicity score modeling for genetic vulnerability assessment
topic Pathogenicity scores
Variant effect prediction
Variant assessment
Computational genetics
url http://www.sciencedirect.com/science/article/pii/S2001037023000235
work_keys_str_mv AT julianschroter argusmultilevelvisualizationofnonsynonymoussinglenucleotidevariantsampadvancedpathogenicityscoremodelingforgeneticvulnerabilityassessment
AT taldattner argusmultilevelvisualizationofnonsynonymoussinglenucleotidevariantsampadvancedpathogenicityscoremodelingforgeneticvulnerabilityassessment
AT jenniferhullein argusmultilevelvisualizationofnonsynonymoussinglenucleotidevariantsampadvancedpathogenicityscoremodelingforgeneticvulnerabilityassessment
AT alejandrajayme argusmultilevelvisualizationofnonsynonymoussinglenucleotidevariantsampadvancedpathogenicityscoremodelingforgeneticvulnerabilityassessment
AT vincentheuveline argusmultilevelvisualizationofnonsynonymoussinglenucleotidevariantsampadvancedpathogenicityscoremodelingforgeneticvulnerabilityassessment
AT georgfhoffmann argusmultilevelvisualizationofnonsynonymoussinglenucleotidevariantsampadvancedpathogenicityscoremodelingforgeneticvulnerabilityassessment
AT stefankolker argusmultilevelvisualizationofnonsynonymoussinglenucleotidevariantsampadvancedpathogenicityscoremodelingforgeneticvulnerabilityassessment
AT dominiclenz argusmultilevelvisualizationofnonsynonymoussinglenucleotidevariantsampadvancedpathogenicityscoremodelingforgeneticvulnerabilityassessment
AT thomasopladen argusmultilevelvisualizationofnonsynonymoussinglenucleotidevariantsampadvancedpathogenicityscoremodelingforgeneticvulnerabilityassessment
AT berntpopp argusmultilevelvisualizationofnonsynonymoussinglenucleotidevariantsampadvancedpathogenicityscoremodelingforgeneticvulnerabilityassessment
AT christianpschaaf argusmultilevelvisualizationofnonsynonymoussinglenucleotidevariantsampadvancedpathogenicityscoremodelingforgeneticvulnerabilityassessment
AT christianstaufner argusmultilevelvisualizationofnonsynonymoussinglenucleotidevariantsampadvancedpathogenicityscoremodelingforgeneticvulnerabilityassessment
AT steffensyrbe argusmultilevelvisualizationofnonsynonymoussinglenucleotidevariantsampadvancedpathogenicityscoremodelingforgeneticvulnerabilityassessment
AT sebastianuhrig argusmultilevelvisualizationofnonsynonymoussinglenucleotidevariantsampadvancedpathogenicityscoremodelingforgeneticvulnerabilityassessment
AT danielhubschmann argusmultilevelvisualizationofnonsynonymoussinglenucleotidevariantsampadvancedpathogenicityscoremodelingforgeneticvulnerabilityassessment
AT heikobrennenstuhl argusmultilevelvisualizationofnonsynonymoussinglenucleotidevariantsampadvancedpathogenicityscoremodelingforgeneticvulnerabilityassessment