Numerical Algorithms for Computing an Arbitrary Singular Value of a Tensor Sum

We consider computing an arbitrary singular value of a tensor sum: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>:</mo><mo>=</mo><msub><mi>I&...

Full description

Bibliographic Details
Main Authors: Asuka Ohashi, Tomohiro Sogabe
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/10/3/211
_version_ 1797520167982333952
author Asuka Ohashi
Tomohiro Sogabe
author_facet Asuka Ohashi
Tomohiro Sogabe
author_sort Asuka Ohashi
collection DOAJ
description We consider computing an arbitrary singular value of a tensor sum: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>:</mo><mo>=</mo><msub><mi>I</mi><mi>n</mi></msub><mo>⊗</mo><msub><mi>I</mi><mi>m</mi></msub><mo>⊗</mo><mi>A</mi><mo>+</mo><msub><mi>I</mi><mi>n</mi></msub><mo>⊗</mo><mi>B</mi><mo>⊗</mo><msub><mi>I</mi><mo>ℓ</mo></msub><mo>+</mo><mi>C</mi><mo>⊗</mo><msub><mi>I</mi><mi>m</mi></msub><mo>⊗</mo><msub><mi>I</mi><mo>ℓ</mo></msub><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mo>ℓ</mo><mi>m</mi><mi>n</mi><mo>×</mo><mo>ℓ</mo><mi>m</mi><mi>n</mi></mrow></msup><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mo>ℓ</mo><mo>×</mo><mo>ℓ</mo></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mi>m</mi><mo>×</mo><mi>m</mi></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula>. We focus on the shift-and-invert Lanczos method, which solves a shift-and-invert eigenvalue problem of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mo stretchy="false">(</mo><msup><mi>T</mi><mi mathvariant="normal">T</mi></msup><mi>T</mi><mo>−</mo><msup><mover accent="true"><mi>σ</mi><mo>˜</mo></mover><mn>2</mn></msup><msub><mi>I</mi><mrow><mo>ℓ</mo><mi>m</mi><mi>n</mi></mrow></msub><mo stretchy="false">)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>σ</mi><mo>˜</mo></mover></semantics></math></inline-formula> is set to a scalar value close to the desired singular value. The desired singular value is computed by the maximum eigenvalue of the eigenvalue problem. This shift-and-invert Lanczos method needs to solve large-scale linear systems with the coefficient matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>T</mi><mi mathvariant="normal">T</mi></msup><mi>T</mi><mo>−</mo><msup><mover accent="true"><mi>σ</mi><mo>˜</mo></mover><mn>2</mn></msup><msub><mi>I</mi><mrow><mo>ℓ</mo><mi>m</mi><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula>. The preconditioned conjugate gradient (PCG) method is applied since the direct methods cannot be applied due to the nonzero structure of the coefficient matrix. However, it is difficult in terms of memory requirements to simply implement the shift-and-invert Lanczos and the PCG methods since the size of <i>T</i> grows rapidly by the sizes of <i>A</i>, <i>B</i>, and <i>C</i>. In this paper, we present the following two techniques: (1) efficient implementations of the shift-and-invert Lanczos method for the eigenvalue problem of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>T</mi><mi mathvariant="normal">T</mi></msup><mi>T</mi></mrow></semantics></math></inline-formula> and the PCG method for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>T</mi><mi mathvariant="normal">T</mi></msup><mi>T</mi><mo>−</mo><msup><mover accent="true"><mi>σ</mi><mo>˜</mo></mover><mn>2</mn></msup><msub><mi>I</mi><mrow><mo>ℓ</mo><mi>m</mi><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula> using three-dimensional arrays (third-order tensors) and the <i>n</i>-mode products, and (2) preconditioning matrices of the PCG method based on the eigenvalue and the Schur decomposition of <i>T</i>. Finally, we show the effectiveness of the proposed methods through numerical experiments.
first_indexed 2024-03-10T07:53:01Z
format Article
id doaj.art-320c6597de624502941961345cb8fdf0
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-10T07:53:01Z
publishDate 2021-08-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-320c6597de624502941961345cb8fdf02023-11-22T12:03:03ZengMDPI AGAxioms2075-16802021-08-0110321110.3390/axioms10030211Numerical Algorithms for Computing an Arbitrary Singular Value of a Tensor SumAsuka Ohashi0Tomohiro Sogabe1National Institute of Technology, Kagawa College, Takuma Campus, Mitoyo 769-1192, JapanDepartment of Applied Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, JapanWe consider computing an arbitrary singular value of a tensor sum: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>:</mo><mo>=</mo><msub><mi>I</mi><mi>n</mi></msub><mo>⊗</mo><msub><mi>I</mi><mi>m</mi></msub><mo>⊗</mo><mi>A</mi><mo>+</mo><msub><mi>I</mi><mi>n</mi></msub><mo>⊗</mo><mi>B</mi><mo>⊗</mo><msub><mi>I</mi><mo>ℓ</mo></msub><mo>+</mo><mi>C</mi><mo>⊗</mo><msub><mi>I</mi><mi>m</mi></msub><mo>⊗</mo><msub><mi>I</mi><mo>ℓ</mo></msub><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mo>ℓ</mo><mi>m</mi><mi>n</mi><mo>×</mo><mo>ℓ</mo><mi>m</mi><mi>n</mi></mrow></msup><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mo>ℓ</mo><mo>×</mo><mo>ℓ</mo></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mi>m</mi><mo>×</mo><mi>m</mi></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula>. We focus on the shift-and-invert Lanczos method, which solves a shift-and-invert eigenvalue problem of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mo stretchy="false">(</mo><msup><mi>T</mi><mi mathvariant="normal">T</mi></msup><mi>T</mi><mo>−</mo><msup><mover accent="true"><mi>σ</mi><mo>˜</mo></mover><mn>2</mn></msup><msub><mi>I</mi><mrow><mo>ℓ</mo><mi>m</mi><mi>n</mi></mrow></msub><mo stretchy="false">)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>σ</mi><mo>˜</mo></mover></semantics></math></inline-formula> is set to a scalar value close to the desired singular value. The desired singular value is computed by the maximum eigenvalue of the eigenvalue problem. This shift-and-invert Lanczos method needs to solve large-scale linear systems with the coefficient matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>T</mi><mi mathvariant="normal">T</mi></msup><mi>T</mi><mo>−</mo><msup><mover accent="true"><mi>σ</mi><mo>˜</mo></mover><mn>2</mn></msup><msub><mi>I</mi><mrow><mo>ℓ</mo><mi>m</mi><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula>. The preconditioned conjugate gradient (PCG) method is applied since the direct methods cannot be applied due to the nonzero structure of the coefficient matrix. However, it is difficult in terms of memory requirements to simply implement the shift-and-invert Lanczos and the PCG methods since the size of <i>T</i> grows rapidly by the sizes of <i>A</i>, <i>B</i>, and <i>C</i>. In this paper, we present the following two techniques: (1) efficient implementations of the shift-and-invert Lanczos method for the eigenvalue problem of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>T</mi><mi mathvariant="normal">T</mi></msup><mi>T</mi></mrow></semantics></math></inline-formula> and the PCG method for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>T</mi><mi mathvariant="normal">T</mi></msup><mi>T</mi><mo>−</mo><msup><mover accent="true"><mi>σ</mi><mo>˜</mo></mover><mn>2</mn></msup><msub><mi>I</mi><mrow><mo>ℓ</mo><mi>m</mi><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula> using three-dimensional arrays (third-order tensors) and the <i>n</i>-mode products, and (2) preconditioning matrices of the PCG method based on the eigenvalue and the Schur decomposition of <i>T</i>. Finally, we show the effectiveness of the proposed methods through numerical experiments.https://www.mdpi.com/2075-1680/10/3/211tensor sumsingular valueshift-and-invert Lanczos methodpreconditioned conjugate gradient method
spellingShingle Asuka Ohashi
Tomohiro Sogabe
Numerical Algorithms for Computing an Arbitrary Singular Value of a Tensor Sum
Axioms
tensor sum
singular value
shift-and-invert Lanczos method
preconditioned conjugate gradient method
title Numerical Algorithms for Computing an Arbitrary Singular Value of a Tensor Sum
title_full Numerical Algorithms for Computing an Arbitrary Singular Value of a Tensor Sum
title_fullStr Numerical Algorithms for Computing an Arbitrary Singular Value of a Tensor Sum
title_full_unstemmed Numerical Algorithms for Computing an Arbitrary Singular Value of a Tensor Sum
title_short Numerical Algorithms for Computing an Arbitrary Singular Value of a Tensor Sum
title_sort numerical algorithms for computing an arbitrary singular value of a tensor sum
topic tensor sum
singular value
shift-and-invert Lanczos method
preconditioned conjugate gradient method
url https://www.mdpi.com/2075-1680/10/3/211
work_keys_str_mv AT asukaohashi numericalalgorithmsforcomputinganarbitrarysingularvalueofatensorsum
AT tomohirosogabe numericalalgorithmsforcomputinganarbitrarysingularvalueofatensorsum