Description of the automorphism groups of some Leibniz algebras

Let $L$ be an algebra over a field $F$ with the binary operations $+$ and $[,]$. Then $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $[[a,b],c]=[a,[b,c]]-[b,[a,c]]$ for all elements $a,b,c\in L$. A linear transformation $f$ of $L$ is called an endomorphism of $L$, if...

Full description

Bibliographic Details
Main Authors: L.A. Kurdachenko, O.O. Pypka, M.M. Semko
Format: Article
Language:English
Published: Oles Honchar Dnipro National University 2023-06-01
Series:Researches in Mathematics
Subjects:
Online Access:https://vestnmath.dnu.dp.ua/index.php/rim/article/view/399/399
_version_ 1797800148757118976
author L.A. Kurdachenko
O.O. Pypka
M.M. Semko
author_facet L.A. Kurdachenko
O.O. Pypka
M.M. Semko
author_sort L.A. Kurdachenko
collection DOAJ
description Let $L$ be an algebra over a field $F$ with the binary operations $+$ and $[,]$. Then $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $[[a,b],c]=[a,[b,c]]-[b,[a,c]]$ for all elements $a,b,c\in L$. A linear transformation $f$ of $L$ is called an endomorphism of $L$, if $f([a,b])=[f(a),f(b)]$ for all elements $a,b\in L$. A bijective endomorphism of $L$ is called an automorphism of $L$. It is easy to show that the set of all automorphisms of the Leibniz algebra is a group with respect to the operation of multiplication of automorphisms. The description of the structure of the automorphism groups of Leibniz algebras is one of the natural and important problems of the general Leibniz algebra theory. The main goal of this article is to describe the structure of the automorphism group of a certain type of nilpotent three-dimensional Leibniz algebras.
first_indexed 2024-03-13T04:30:44Z
format Article
id doaj.art-320e2dee4aed4006a9bdeb0f4777af66
institution Directory Open Access Journal
issn 2664-4991
2664-5009
language English
last_indexed 2024-03-13T04:30:44Z
publishDate 2023-06-01
publisher Oles Honchar Dnipro National University
record_format Article
series Researches in Mathematics
spelling doaj.art-320e2dee4aed4006a9bdeb0f4777af662023-06-19T14:01:15ZengOles Honchar Dnipro National UniversityResearches in Mathematics2664-49912664-50092023-06-01311526110.15421/242305Description of the automorphism groups of some Leibniz algebrasL.A. Kurdachenko0https://orcid.org/0000-0002-6368-7319O.O. Pypka1https://orcid.org/0000-0003-0837-5395M.M. Semko2https://orcid.org/0000-0003-0123-4872Oles Honchar Dnipro National UniversityOles Honchar Dnipro National UniversityState Tax UniversityLet $L$ be an algebra over a field $F$ with the binary operations $+$ and $[,]$. Then $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $[[a,b],c]=[a,[b,c]]-[b,[a,c]]$ for all elements $a,b,c\in L$. A linear transformation $f$ of $L$ is called an endomorphism of $L$, if $f([a,b])=[f(a),f(b)]$ for all elements $a,b\in L$. A bijective endomorphism of $L$ is called an automorphism of $L$. It is easy to show that the set of all automorphisms of the Leibniz algebra is a group with respect to the operation of multiplication of automorphisms. The description of the structure of the automorphism groups of Leibniz algebras is one of the natural and important problems of the general Leibniz algebra theory. The main goal of this article is to describe the structure of the automorphism group of a certain type of nilpotent three-dimensional Leibniz algebras.https://vestnmath.dnu.dp.ua/index.php/rim/article/view/399/399leibniz algebraautomorphism group
spellingShingle L.A. Kurdachenko
O.O. Pypka
M.M. Semko
Description of the automorphism groups of some Leibniz algebras
Researches in Mathematics
leibniz algebra
automorphism group
title Description of the automorphism groups of some Leibniz algebras
title_full Description of the automorphism groups of some Leibniz algebras
title_fullStr Description of the automorphism groups of some Leibniz algebras
title_full_unstemmed Description of the automorphism groups of some Leibniz algebras
title_short Description of the automorphism groups of some Leibniz algebras
title_sort description of the automorphism groups of some leibniz algebras
topic leibniz algebra
automorphism group
url https://vestnmath.dnu.dp.ua/index.php/rim/article/view/399/399
work_keys_str_mv AT lakurdachenko descriptionoftheautomorphismgroupsofsomeleibnizalgebras
AT oopypka descriptionoftheautomorphismgroupsofsomeleibnizalgebras
AT mmsemko descriptionoftheautomorphismgroupsofsomeleibnizalgebras