Summary: | In fire investigations, the most important aspect is determining the presence of a liquid accelerant at the fire scene. The presence or absence of accelerants is critical evidence during trials for fire cases. Upon exposure to high temperatures, metallic substances undergo oxidation, which can be imparted by accelerants in the fire. Oxides and substrates found on metal surfaces offer valuable information on the characteristics of fire, including exposure temperature, duration, and involvement of a liquid accelerant. In this study, we investigated the oxidation behavior of copper at high temperatures in a simulated flame environment using ethanol combustion. After oxidation, the morphological, oxide phase composition, and microstructural features of specimens were characterized by observation, X-ray diffraction, X-ray photoelectron energy spectroscopy, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopic analysis. The elemental carbon with a hexagonal structure deposited on the sample’s surface was found, which may be incomplete combustion and the chemical composition of ethanol. Copper has a preferred orientation of oxide on the (111) crystal plane, which differs from oxidation in ordinary hot air that is related to the large Coulomb force of the (111) crystal plane. Hot air convection due to combustion may cause large areas of oxide layer on the copper surface to crack and peel. Oxide properties and surface state of metals strongly depended on oxidation duration, temperature, and atmosphere. These data shall offer reference information for determining the presence of combustion accelerants at fire scenes.
|