Automatic Acne Object Detection and Acne Severity Grading Using Smartphone Images and Artificial Intelligence

Skin image analysis using artificial intelligence (AI) has recently attracted significant research interest, particularly for analyzing skin images captured by mobile devices. Acne is one of the most common skin conditions with profound effects in severe cases. In this study, we developed an AI syst...

Full description

Bibliographic Details
Main Authors: Quan Thanh Huynh, Phuc Hoang Nguyen, Hieu Xuan Le, Lua Thi Ngo, Nhu-Thuy Trinh, Mai Thi-Thanh Tran, Hoan Tam Nguyen, Nga Thi Vu, Anh Tam Nguyen, Kazuma Suda, Kazuhiro Tsuji, Tsuyoshi Ishii, Trung Xuan Ngo, Hoan Thanh Ngo
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Diagnostics
Subjects:
Online Access:https://www.mdpi.com/2075-4418/12/8/1879
_version_ 1797446063089516544
author Quan Thanh Huynh
Phuc Hoang Nguyen
Hieu Xuan Le
Lua Thi Ngo
Nhu-Thuy Trinh
Mai Thi-Thanh Tran
Hoan Tam Nguyen
Nga Thi Vu
Anh Tam Nguyen
Kazuma Suda
Kazuhiro Tsuji
Tsuyoshi Ishii
Trung Xuan Ngo
Hoan Thanh Ngo
author_facet Quan Thanh Huynh
Phuc Hoang Nguyen
Hieu Xuan Le
Lua Thi Ngo
Nhu-Thuy Trinh
Mai Thi-Thanh Tran
Hoan Tam Nguyen
Nga Thi Vu
Anh Tam Nguyen
Kazuma Suda
Kazuhiro Tsuji
Tsuyoshi Ishii
Trung Xuan Ngo
Hoan Thanh Ngo
author_sort Quan Thanh Huynh
collection DOAJ
description Skin image analysis using artificial intelligence (AI) has recently attracted significant research interest, particularly for analyzing skin images captured by mobile devices. Acne is one of the most common skin conditions with profound effects in severe cases. In this study, we developed an AI system called AcneDet for automatic acne object detection and acne severity grading using facial images captured by smartphones. AcneDet includes two models for two tasks: (1) a Faster R-CNN-based deep learning model for the detection of acne lesion objects of four types, including blackheads/whiteheads, papules/pustules, nodules/cysts, and acne scars; and (2) a LightGBM machine learning model for grading acne severity using the Investigator’s Global Assessment (IGA) scale. The output of the Faster R-CNN model, i.e., the counts of each acne type, were used as input for the LightGBM model for acne severity grading. A dataset consisting of 1572 labeled facial images captured by both iOS and Android smartphones was used for training. The results show that the Faster R-CNN model achieves a mAP of 0.54 for acne object detection. The mean accuracy of acne severity grading by the LightGBM model is 0.85. With this study, we hope to contribute to the development of artificial intelligent systems to help acne patients better understand their conditions and support doctors in acne diagnosis.
first_indexed 2024-03-09T13:34:52Z
format Article
id doaj.art-32199646643e4185a2ccf33e85551078
institution Directory Open Access Journal
issn 2075-4418
language English
last_indexed 2024-03-09T13:34:52Z
publishDate 2022-08-01
publisher MDPI AG
record_format Article
series Diagnostics
spelling doaj.art-32199646643e4185a2ccf33e855510782023-11-30T21:13:06ZengMDPI AGDiagnostics2075-44182022-08-01128187910.3390/diagnostics12081879Automatic Acne Object Detection and Acne Severity Grading Using Smartphone Images and Artificial IntelligenceQuan Thanh Huynh0Phuc Hoang Nguyen1Hieu Xuan Le2Lua Thi Ngo3Nhu-Thuy Trinh4Mai Thi-Thanh Tran5Hoan Tam Nguyen6Nga Thi Vu7Anh Tam Nguyen8Kazuma Suda9Kazuhiro Tsuji10Tsuyoshi Ishii11Trung Xuan Ngo12Hoan Thanh Ngo13Medical AI Co., Ltd., Ho Chi Minh City 700000, VietnamMedical AI Co., Ltd., Ho Chi Minh City 700000, VietnamMedical AI Co., Ltd., Ho Chi Minh City 700000, VietnamMedical AI Co., Ltd., Ho Chi Minh City 700000, VietnamMedical AI Co., Ltd., Ho Chi Minh City 700000, VietnamMedical AI Co., Ltd., Ho Chi Minh City 700000, VietnamMedical AI Co., Ltd., Ho Chi Minh City 700000, VietnamMedical AI Co., Ltd., Ho Chi Minh City 700000, VietnamMedical AI Co., Ltd., Ho Chi Minh City 700000, VietnamRohto Pharmaceutical Co., Ltd., Basic Research Division, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, JapanRohto Pharmaceutical Co., Ltd., Regulatory Affairs Promotion Division, 1-8-1 Tatsumi-nishi, Ikuno-ku, Osaka 544-8666, JapanRohto Pharmaceutical Co., Ltd., Basic Research Division, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, JapanRohto Pharmaceutical Co., Ltd., Basic Research Division, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, JapanMedical AI Co., Ltd., Ho Chi Minh City 700000, VietnamSkin image analysis using artificial intelligence (AI) has recently attracted significant research interest, particularly for analyzing skin images captured by mobile devices. Acne is one of the most common skin conditions with profound effects in severe cases. In this study, we developed an AI system called AcneDet for automatic acne object detection and acne severity grading using facial images captured by smartphones. AcneDet includes two models for two tasks: (1) a Faster R-CNN-based deep learning model for the detection of acne lesion objects of four types, including blackheads/whiteheads, papules/pustules, nodules/cysts, and acne scars; and (2) a LightGBM machine learning model for grading acne severity using the Investigator’s Global Assessment (IGA) scale. The output of the Faster R-CNN model, i.e., the counts of each acne type, were used as input for the LightGBM model for acne severity grading. A dataset consisting of 1572 labeled facial images captured by both iOS and Android smartphones was used for training. The results show that the Faster R-CNN model achieves a mAP of 0.54 for acne object detection. The mean accuracy of acne severity grading by the LightGBM model is 0.85. With this study, we hope to contribute to the development of artificial intelligent systems to help acne patients better understand their conditions and support doctors in acne diagnosis.https://www.mdpi.com/2075-4418/12/8/1879deep learningsmartphone imageacne gradingacne object detection
spellingShingle Quan Thanh Huynh
Phuc Hoang Nguyen
Hieu Xuan Le
Lua Thi Ngo
Nhu-Thuy Trinh
Mai Thi-Thanh Tran
Hoan Tam Nguyen
Nga Thi Vu
Anh Tam Nguyen
Kazuma Suda
Kazuhiro Tsuji
Tsuyoshi Ishii
Trung Xuan Ngo
Hoan Thanh Ngo
Automatic Acne Object Detection and Acne Severity Grading Using Smartphone Images and Artificial Intelligence
Diagnostics
deep learning
smartphone image
acne grading
acne object detection
title Automatic Acne Object Detection and Acne Severity Grading Using Smartphone Images and Artificial Intelligence
title_full Automatic Acne Object Detection and Acne Severity Grading Using Smartphone Images and Artificial Intelligence
title_fullStr Automatic Acne Object Detection and Acne Severity Grading Using Smartphone Images and Artificial Intelligence
title_full_unstemmed Automatic Acne Object Detection and Acne Severity Grading Using Smartphone Images and Artificial Intelligence
title_short Automatic Acne Object Detection and Acne Severity Grading Using Smartphone Images and Artificial Intelligence
title_sort automatic acne object detection and acne severity grading using smartphone images and artificial intelligence
topic deep learning
smartphone image
acne grading
acne object detection
url https://www.mdpi.com/2075-4418/12/8/1879
work_keys_str_mv AT quanthanhhuynh automaticacneobjectdetectionandacneseveritygradingusingsmartphoneimagesandartificialintelligence
AT phuchoangnguyen automaticacneobjectdetectionandacneseveritygradingusingsmartphoneimagesandartificialintelligence
AT hieuxuanle automaticacneobjectdetectionandacneseveritygradingusingsmartphoneimagesandartificialintelligence
AT luathingo automaticacneobjectdetectionandacneseveritygradingusingsmartphoneimagesandartificialintelligence
AT nhuthuytrinh automaticacneobjectdetectionandacneseveritygradingusingsmartphoneimagesandartificialintelligence
AT maithithanhtran automaticacneobjectdetectionandacneseveritygradingusingsmartphoneimagesandartificialintelligence
AT hoantamnguyen automaticacneobjectdetectionandacneseveritygradingusingsmartphoneimagesandartificialintelligence
AT ngathivu automaticacneobjectdetectionandacneseveritygradingusingsmartphoneimagesandartificialintelligence
AT anhtamnguyen automaticacneobjectdetectionandacneseveritygradingusingsmartphoneimagesandartificialintelligence
AT kazumasuda automaticacneobjectdetectionandacneseveritygradingusingsmartphoneimagesandartificialintelligence
AT kazuhirotsuji automaticacneobjectdetectionandacneseveritygradingusingsmartphoneimagesandartificialintelligence
AT tsuyoshiishii automaticacneobjectdetectionandacneseveritygradingusingsmartphoneimagesandartificialintelligence
AT trungxuanngo automaticacneobjectdetectionandacneseveritygradingusingsmartphoneimagesandartificialintelligence
AT hoanthanhngo automaticacneobjectdetectionandacneseveritygradingusingsmartphoneimagesandartificialintelligence