Soft actuators built from cellulose paper: A review on actuation, material, fabrication, and applications

Cellulose paper, a material that is naturally derived, low cost, lightweight, eco-friendly, and mechanically deformable, plays important roles in producing next-generation flexible electronics. Following the booms in the development of functional electronics, the soft actuators built from cellulose...

Full description

Bibliographic Details
Main Authors: Yan Liu, Siyao Shang, Shuting Mo, Peng Wang, Bin Yin, Jiaming Wei
Format: Article
Language:English
Published: Elsevier 2021-09-01
Series:Journal of Science: Advanced Materials and Devices
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2468217921000435
Description
Summary:Cellulose paper, a material that is naturally derived, low cost, lightweight, eco-friendly, and mechanically deformable, plays important roles in producing next-generation flexible electronics. Following the booms in the development of functional electronics, the soft actuators built from cellulose paper have attracted great attention. In this focused review, the milestones and recent achievements of cellulose paper-based actuators are summarized. Electro-, thermal, moisture and magnetic actuation mechanisms are utilized to acquire energy from external stimuli. Corresponding functional materials and available fabrication techniques like film assembly and layer deposition are described. Programmable actions for the emerging applications in bionics, paper grippers and robots are realized by pursuing different strategies to control the responding deformation. Along with a conclusion, the existing challenges and possible solutions in evaluating and improving the performance of cellulose paper are summarized in the final section.
ISSN:2468-2179