Thermal Decomposition Properties of Materials from Different Parts of Corn Stalk

To help better utilize corn stalk (CS), pyrolysis behavior of materials from different parts of the CS including corn stalk without pith, corn root, and corn leaf were analyzed using thermogravimetric analysis (TGA) at heating rates of 5, 10, 20, and 25 °C/min. The apparent activation energies deter...

Full description

Bibliographic Details
Main Authors: Siwei Huang, Qinglin Wu, Dingguo Zhou, Runzhou Huang
Format: Article
Language:English
Published: North Carolina State University 2015-02-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_10_2_2020_Huang_Thermal_Decomposition_Corn_Stalk
Description
Summary:To help better utilize corn stalk (CS), pyrolysis behavior of materials from different parts of the CS including corn stalk without pith, corn root, and corn leaf were analyzed using thermogravimetric analysis (TGA) at heating rates of 5, 10, 20, and 25 °C/min. The apparent activation energies determined by the Friedman method for corn stalk without pith, corn root, and corn leaf were in the range of 26.4 to 103.6 kJ/mol, 37.6 to 69.5 kJ/mol, and 35.0 to 103.9 kJ/mol, respectively, depending on the conversion. The main thermal decomposition occurred within a temperature range of 200 to 350 °C (±10 °C). Most of the volatile materials decomposed at less than a 0.8 conversion rate. At greater than a 0.8 conversion rate, the remaining material was mainly char, and the decomposition of char proceeded at higher conversion rates. Different pyrolysis characteristics in the CS indicated that different treatments should be chosen according to different parts for achieving the optimum conversion rate in practical applications.
ISSN:1930-2126
1930-2126