A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases
An autoimmune disease is the consequence of the immune system attacking healthy cells, tissues, and organs by mistake instead of protecting them. Inflammation and oxidative stress (OS) are well-recognized processes occurring in association with acute or chronic impairment of cell homeostasis. The tr...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-10-01
|
Series: | Brain Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3425/13/11/1532 |
_version_ | 1827640343228579840 |
---|---|
author | Ilker Ates Ayşe Didem Yılmaz Brigitta Buttari Marzia Arese Luciano Saso Sibel Suzen |
author_facet | Ilker Ates Ayşe Didem Yılmaz Brigitta Buttari Marzia Arese Luciano Saso Sibel Suzen |
author_sort | Ilker Ates |
collection | DOAJ |
description | An autoimmune disease is the consequence of the immune system attacking healthy cells, tissues, and organs by mistake instead of protecting them. Inflammation and oxidative stress (OS) are well-recognized processes occurring in association with acute or chronic impairment of cell homeostasis. The transcription factor Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is of major importance as the defense instrument against OS and alters anti-inflammatory activities related to different pathological states. Researchers have described Nrf2 as a significant regulator of innate immunity. Growing indications suggest that the Nrf2 signaling pathway is deregulated in numerous diseases, including autoimmune disorders. The advantageous outcome of the pharmacological activation of Nrf2 is an essential part of Nrf2-based chemoprevention and intervention in other chronic illnesses, such as neurodegeneration, cardiovascular disease, autoimmune diseases, and chronic kidney and liver disease. Nevertheless, a growing number of investigations have indicated that Nrf2 is already elevated in specific cancer and disease steps, suggesting that the pharmacological agents developed to mitigate the potentially destructive or transformative results associated with the protracted activation of Nrf2 should also be evaluated. The activators of Nrf2 have revealed an improvement in the progress of OS-associated diseases, resulting in immunoregulatory and anti-inflammatory activities; by contrast, the depletion of Nrf2 worsens disease progression. These data strengthen the growing attention to the biological properties of Nrf2 and its possible healing power on diseases. The evidence supporting a correlation between Nrf2 signaling and the most common autoimmune diseases is reviewed here. We focus on the aspects related to the possible effect of Nrf2 activation in ameliorating pathologic conditions based on the role of this regulator of antioxidant genes in the control of inflammation and OS, which are processes related to the progression of autoimmune diseases. Finally, the possibility of Nrf2 activation as a new drug development strategy to target pathogenesis is proposed. |
first_indexed | 2024-03-09T16:58:25Z |
format | Article |
id | doaj.art-321ee218e64f42c2b322d499ad9c247a |
institution | Directory Open Access Journal |
issn | 2076-3425 |
language | English |
last_indexed | 2024-03-09T16:58:25Z |
publishDate | 2023-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Brain Sciences |
spelling | doaj.art-321ee218e64f42c2b322d499ad9c247a2023-11-24T14:32:37ZengMDPI AGBrain Sciences2076-34252023-10-011311153210.3390/brainsci13111532A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune DiseasesIlker Ates0Ayşe Didem Yılmaz1Brigitta Buttari2Marzia Arese3Luciano Saso4Sibel Suzen5Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, TurkeyDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, TurkeyDepartment of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, 00161 Rome, ItalyDepartment of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzae Aldo Moro 5, 00185 Rome, ItalyDepartment of Physiology and Pharmacology ‘‘Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, ItalyDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, TurkeyAn autoimmune disease is the consequence of the immune system attacking healthy cells, tissues, and organs by mistake instead of protecting them. Inflammation and oxidative stress (OS) are well-recognized processes occurring in association with acute or chronic impairment of cell homeostasis. The transcription factor Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is of major importance as the defense instrument against OS and alters anti-inflammatory activities related to different pathological states. Researchers have described Nrf2 as a significant regulator of innate immunity. Growing indications suggest that the Nrf2 signaling pathway is deregulated in numerous diseases, including autoimmune disorders. The advantageous outcome of the pharmacological activation of Nrf2 is an essential part of Nrf2-based chemoprevention and intervention in other chronic illnesses, such as neurodegeneration, cardiovascular disease, autoimmune diseases, and chronic kidney and liver disease. Nevertheless, a growing number of investigations have indicated that Nrf2 is already elevated in specific cancer and disease steps, suggesting that the pharmacological agents developed to mitigate the potentially destructive or transformative results associated with the protracted activation of Nrf2 should also be evaluated. The activators of Nrf2 have revealed an improvement in the progress of OS-associated diseases, resulting in immunoregulatory and anti-inflammatory activities; by contrast, the depletion of Nrf2 worsens disease progression. These data strengthen the growing attention to the biological properties of Nrf2 and its possible healing power on diseases. The evidence supporting a correlation between Nrf2 signaling and the most common autoimmune diseases is reviewed here. We focus on the aspects related to the possible effect of Nrf2 activation in ameliorating pathologic conditions based on the role of this regulator of antioxidant genes in the control of inflammation and OS, which are processes related to the progression of autoimmune diseases. Finally, the possibility of Nrf2 activation as a new drug development strategy to target pathogenesis is proposed.https://www.mdpi.com/2076-3425/13/11/1532Nrf2 activationautoimmune diseasesinflammationautoimmunityimmunoregulatory |
spellingShingle | Ilker Ates Ayşe Didem Yılmaz Brigitta Buttari Marzia Arese Luciano Saso Sibel Suzen A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases Brain Sciences Nrf2 activation autoimmune diseases inflammation autoimmunity immunoregulatory |
title | A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases |
title_full | A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases |
title_fullStr | A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases |
title_full_unstemmed | A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases |
title_short | A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases |
title_sort | review of the potential of nuclear factor erythroid derived 2 like 2 activation in autoimmune diseases |
topic | Nrf2 activation autoimmune diseases inflammation autoimmunity immunoregulatory |
url | https://www.mdpi.com/2076-3425/13/11/1532 |
work_keys_str_mv | AT ilkerates areviewofthepotentialofnuclearfactorerythroidderived2like2activationinautoimmunediseases AT aysedidemyılmaz areviewofthepotentialofnuclearfactorerythroidderived2like2activationinautoimmunediseases AT brigittabuttari areviewofthepotentialofnuclearfactorerythroidderived2like2activationinautoimmunediseases AT marziaarese areviewofthepotentialofnuclearfactorerythroidderived2like2activationinautoimmunediseases AT lucianosaso areviewofthepotentialofnuclearfactorerythroidderived2like2activationinautoimmunediseases AT sibelsuzen areviewofthepotentialofnuclearfactorerythroidderived2like2activationinautoimmunediseases AT ilkerates reviewofthepotentialofnuclearfactorerythroidderived2like2activationinautoimmunediseases AT aysedidemyılmaz reviewofthepotentialofnuclearfactorerythroidderived2like2activationinautoimmunediseases AT brigittabuttari reviewofthepotentialofnuclearfactorerythroidderived2like2activationinautoimmunediseases AT marziaarese reviewofthepotentialofnuclearfactorerythroidderived2like2activationinautoimmunediseases AT lucianosaso reviewofthepotentialofnuclearfactorerythroidderived2like2activationinautoimmunediseases AT sibelsuzen reviewofthepotentialofnuclearfactorerythroidderived2like2activationinautoimmunediseases |