Summary: | Abstract Diabetic wounds have imposed a significant burden on both patients and society with prolonged healing processes hindered by dysfunctional skin repair cells. Small extracellular vesicles (sEVs), as the important media for intercellular communications, show promising therapeutic potential in treating diabetic wounds by restoring cellular functions. However, low yields and limited bio‐function of sEVs greatly challenge their large‐scale clinical use. Here, we briefly overview the biogenesis and cellular uptake of sEVs, emphasize current advances in improving the yields of sEVs and optimizing the function of sEVs with engineering approaches, and summarize the applications of engineered sEVs in diabetic wound treatment. Furthermore, the undissolved issues during the clinical transformation of engineered sEVs are also discussed. This critical review aims to provide meaningful guidance for future applications of engineered sEVs in the management of diabetic wounds.
|