Structure of spaces of rhombus tilings in the lexicograhic case

Rhombus tilings are tilings of zonotopes with rhombohedra. We study a class of \emphlexicographic rhombus tilings of zonotopes, which are deduced from higher Bruhat orders relaxing the unitarity condition. Precisely, we fix a sequence $(v_1, v_2,\dots, v_D)$ of vectors of $ℝ^d$ and a sequence $(m_1,...

Full description

Bibliographic Details
Main Author: Éric Rémila
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2005-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/3400/pdf
Description
Summary:Rhombus tilings are tilings of zonotopes with rhombohedra. We study a class of \emphlexicographic rhombus tilings of zonotopes, which are deduced from higher Bruhat orders relaxing the unitarity condition. Precisely, we fix a sequence $(v_1, v_2,\dots, v_D)$ of vectors of $ℝ^d$ and a sequence $(m_1, m_2,\dots, m_D)$ of positive integers. We assume (lexicographic hypothesis) that for each subsequence $(v_{i1}, v_{i2},\dots, v_{id})$ of length $d$, we have $det(v_{i1}, v_{i2},\dots, v_{id}) > 0$. The zonotope $Z$ is the set $\{ Σα _iv_i 0 ≤α _i ≤m_i \}$. Each prototile used in a tiling of $Z$ is a rhombohedron constructed from a subsequence of d vectors. We prove that the space of tilings of $Z$ is a graded poset, with minimal and maximal element.
ISSN:1365-8050