iMAGING: a novel automated system for malaria diagnosis by using artificial intelligence tools and a universal low-cost robotized microscope

IntroductionMalaria is one of the most prevalent infectious diseases in sub-Saharan Africa, with 247 million cases reported worldwide in 2021 according to the World Health Organization. Optical microscopy remains the gold standard technique for malaria diagnosis, however, it requires expertise, is t...

Full description

Bibliographic Details
Main Authors: Carles Rubio Maturana, Allisson Dantas de Oliveira, Sergi Nadal, Francesc Zarzuela Serrat, Elena Sulleiro, Edurne Ruiz, Besim Bilalli, Anna Veiga, Mateu Espasa, Alberto Abelló, Tomàs Pumarola Suñé, Marta Segú, Daniel López-Codina, Elisa Sayrol Clols, Joan Joseph-Munné
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-11-01
Series:Frontiers in Microbiology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmicb.2023.1240936/full
_version_ 1797460724260274176
author Carles Rubio Maturana
Carles Rubio Maturana
Allisson Dantas de Oliveira
Sergi Nadal
Francesc Zarzuela Serrat
Elena Sulleiro
Elena Sulleiro
Elena Sulleiro
Edurne Ruiz
Besim Bilalli
Anna Veiga
Mateu Espasa
Mateu Espasa
Alberto Abelló
Tomàs Pumarola Suñé
Tomàs Pumarola Suñé
Marta Segú
Daniel López-Codina
Elisa Sayrol Clols
Joan Joseph-Munné
author_facet Carles Rubio Maturana
Carles Rubio Maturana
Allisson Dantas de Oliveira
Sergi Nadal
Francesc Zarzuela Serrat
Elena Sulleiro
Elena Sulleiro
Elena Sulleiro
Edurne Ruiz
Besim Bilalli
Anna Veiga
Mateu Espasa
Mateu Espasa
Alberto Abelló
Tomàs Pumarola Suñé
Tomàs Pumarola Suñé
Marta Segú
Daniel López-Codina
Elisa Sayrol Clols
Joan Joseph-Munné
author_sort Carles Rubio Maturana
collection DOAJ
description IntroductionMalaria is one of the most prevalent infectious diseases in sub-Saharan Africa, with 247 million cases reported worldwide in 2021 according to the World Health Organization. Optical microscopy remains the gold standard technique for malaria diagnosis, however, it requires expertise, is time-consuming and difficult to reproduce. Therefore, new diagnostic techniques based on digital image analysis using artificial intelligence tools can improve diagnosis and help automate it.MethodsIn this study, a dataset of 2571 labeled thick blood smear images were created. YOLOv5x, Faster R-CNN, SSD, and RetinaNet object detection neural networks were trained on the same dataset to evaluate their performance in Plasmodium parasite detection. Attention modules were applied and compared with YOLOv5x results. To automate the entire diagnostic process, a prototype of 3D-printed pieces was designed for the robotization of conventional optical microscopy, capable of auto-focusing the sample and tracking the entire slide.ResultsComparative analysis yielded a performance for YOLOv5x on a test set of 92.10% precision, 93.50% recall, 92.79% F-score, and 94.40% mAP0.5 for leukocyte, early and mature Plasmodium trophozoites overall detection. F-score values of each category were 99.0% for leukocytes, 88.6% for early trophozoites and 87.3% for mature trophozoites detection. Attention modules performance show non-significant statistical differences when compared to YOLOv5x original trained model. The predictive models were integrated into a smartphone-computer application for the purpose of image-based diagnostics in the laboratory. The system can perform a fully automated diagnosis by the auto-focus and X-Y movements of the robotized microscope, the CNN models trained for digital image analysis, and the smartphone device. The new prototype would determine whether a Giemsa-stained thick blood smear sample is positive/negative for Plasmodium infection and its parasite levels. The whole system was integrated into the iMAGING smartphone application.ConclusionThe coalescence of the fully-automated system via auto-focus and slide movements and the autonomous detection of Plasmodium parasites in digital images with a smartphone software and AI algorithms confers the prototype the optimal features to join the global effort against malaria, neglected tropical diseases and other infectious diseases.
first_indexed 2024-03-09T17:10:07Z
format Article
id doaj.art-32218ad0c42e4e38acb6d45a36012a74
institution Directory Open Access Journal
issn 1664-302X
language English
last_indexed 2024-03-09T17:10:07Z
publishDate 2023-11-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Microbiology
spelling doaj.art-32218ad0c42e4e38acb6d45a36012a742023-11-24T14:09:24ZengFrontiers Media S.A.Frontiers in Microbiology1664-302X2023-11-011410.3389/fmicb.2023.12409361240936iMAGING: a novel automated system for malaria diagnosis by using artificial intelligence tools and a universal low-cost robotized microscopeCarles Rubio Maturana0Carles Rubio Maturana1Allisson Dantas de Oliveira2Sergi Nadal3Francesc Zarzuela Serrat4Elena Sulleiro5Elena Sulleiro6Elena Sulleiro7Edurne Ruiz8Besim Bilalli9Anna Veiga10Mateu Espasa11Mateu Espasa12Alberto Abelló13Tomàs Pumarola Suñé14Tomàs Pumarola Suñé15Marta Segú16Daniel López-Codina17Elisa Sayrol Clols18Joan Joseph-Munné19Microbiology Department, Vall d’Hebron University Hospital, Vall d’Hebron Research Institute (VHIR), Barcelona, SpainDepartment of Microbiology and Genetics, Universitat Autònoma de Barcelona (UAB), Barcelona, SpainComputational Biology and Complex Systems Group, Physics Department, Universitat Politècnica de Catalunya (UPC), Castelldefels, SpainDatabase Technologies and Information Group, Service and Information Systems Engineering Department, Universitat Politècnica de Catalunya (UPC), Barcelona, SpainMicrobiology Department, Vall d’Hebron University Hospital, Vall d’Hebron Research Institute (VHIR), Barcelona, SpainMicrobiology Department, Vall d’Hebron University Hospital, Vall d’Hebron Research Institute (VHIR), Barcelona, SpainDepartment of Microbiology and Genetics, Universitat Autònoma de Barcelona (UAB), Barcelona, SpainCIBERINFEC, ISCIII- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, SpainMicrobiology Department, Vall d’Hebron University Hospital, Vall d’Hebron Research Institute (VHIR), Barcelona, SpainDatabase Technologies and Information Group, Service and Information Systems Engineering Department, Universitat Politècnica de Catalunya (UPC), Barcelona, SpainProbitas Foundation, Barcelona, SpainDepartment of Microbiology and Genetics, Universitat Autònoma de Barcelona (UAB), Barcelona, SpainClinical Laboratories, Microbiology Department, Hospital Universitari Parc Taulí, Sabadell, SpainDatabase Technologies and Information Group, Service and Information Systems Engineering Department, Universitat Politècnica de Catalunya (UPC), Barcelona, SpainMicrobiology Department, Vall d’Hebron University Hospital, Vall d’Hebron Research Institute (VHIR), Barcelona, SpainDepartment of Microbiology and Genetics, Universitat Autònoma de Barcelona (UAB), Barcelona, SpainFutbol Club Barcelona Foundation, Barcelona, SpainComputational Biology and Complex Systems Group, Physics Department, Universitat Politècnica de Catalunya (UPC), Castelldefels, SpainTecnocampus, Universitat Pompeu Fabra, Mataró, SpainMicrobiology Department, Vall d’Hebron University Hospital, Vall d’Hebron Research Institute (VHIR), Barcelona, SpainIntroductionMalaria is one of the most prevalent infectious diseases in sub-Saharan Africa, with 247 million cases reported worldwide in 2021 according to the World Health Organization. Optical microscopy remains the gold standard technique for malaria diagnosis, however, it requires expertise, is time-consuming and difficult to reproduce. Therefore, new diagnostic techniques based on digital image analysis using artificial intelligence tools can improve diagnosis and help automate it.MethodsIn this study, a dataset of 2571 labeled thick blood smear images were created. YOLOv5x, Faster R-CNN, SSD, and RetinaNet object detection neural networks were trained on the same dataset to evaluate their performance in Plasmodium parasite detection. Attention modules were applied and compared with YOLOv5x results. To automate the entire diagnostic process, a prototype of 3D-printed pieces was designed for the robotization of conventional optical microscopy, capable of auto-focusing the sample and tracking the entire slide.ResultsComparative analysis yielded a performance for YOLOv5x on a test set of 92.10% precision, 93.50% recall, 92.79% F-score, and 94.40% mAP0.5 for leukocyte, early and mature Plasmodium trophozoites overall detection. F-score values of each category were 99.0% for leukocytes, 88.6% for early trophozoites and 87.3% for mature trophozoites detection. Attention modules performance show non-significant statistical differences when compared to YOLOv5x original trained model. The predictive models were integrated into a smartphone-computer application for the purpose of image-based diagnostics in the laboratory. The system can perform a fully automated diagnosis by the auto-focus and X-Y movements of the robotized microscope, the CNN models trained for digital image analysis, and the smartphone device. The new prototype would determine whether a Giemsa-stained thick blood smear sample is positive/negative for Plasmodium infection and its parasite levels. The whole system was integrated into the iMAGING smartphone application.ConclusionThe coalescence of the fully-automated system via auto-focus and slide movements and the autonomous detection of Plasmodium parasites in digital images with a smartphone software and AI algorithms confers the prototype the optimal features to join the global effort against malaria, neglected tropical diseases and other infectious diseases.https://www.frontiersin.org/articles/10.3389/fmicb.2023.1240936/fullmalariamalaria diagnosisconvolutional neural networksartificial intelligencerobotized microscopesmartphone application
spellingShingle Carles Rubio Maturana
Carles Rubio Maturana
Allisson Dantas de Oliveira
Sergi Nadal
Francesc Zarzuela Serrat
Elena Sulleiro
Elena Sulleiro
Elena Sulleiro
Edurne Ruiz
Besim Bilalli
Anna Veiga
Mateu Espasa
Mateu Espasa
Alberto Abelló
Tomàs Pumarola Suñé
Tomàs Pumarola Suñé
Marta Segú
Daniel López-Codina
Elisa Sayrol Clols
Joan Joseph-Munné
iMAGING: a novel automated system for malaria diagnosis by using artificial intelligence tools and a universal low-cost robotized microscope
Frontiers in Microbiology
malaria
malaria diagnosis
convolutional neural networks
artificial intelligence
robotized microscope
smartphone application
title iMAGING: a novel automated system for malaria diagnosis by using artificial intelligence tools and a universal low-cost robotized microscope
title_full iMAGING: a novel automated system for malaria diagnosis by using artificial intelligence tools and a universal low-cost robotized microscope
title_fullStr iMAGING: a novel automated system for malaria diagnosis by using artificial intelligence tools and a universal low-cost robotized microscope
title_full_unstemmed iMAGING: a novel automated system for malaria diagnosis by using artificial intelligence tools and a universal low-cost robotized microscope
title_short iMAGING: a novel automated system for malaria diagnosis by using artificial intelligence tools and a universal low-cost robotized microscope
title_sort imaging a novel automated system for malaria diagnosis by using artificial intelligence tools and a universal low cost robotized microscope
topic malaria
malaria diagnosis
convolutional neural networks
artificial intelligence
robotized microscope
smartphone application
url https://www.frontiersin.org/articles/10.3389/fmicb.2023.1240936/full
work_keys_str_mv AT carlesrubiomaturana imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT carlesrubiomaturana imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT allissondantasdeoliveira imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT serginadal imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT francesczarzuelaserrat imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT elenasulleiro imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT elenasulleiro imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT elenasulleiro imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT edurneruiz imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT besimbilalli imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT annaveiga imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT mateuespasa imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT mateuespasa imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT albertoabello imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT tomaspumarolasune imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT tomaspumarolasune imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT martasegu imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT daniellopezcodina imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT elisasayrolclols imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope
AT joanjosephmunne imaginganovelautomatedsystemformalariadiagnosisbyusingartificialintelligencetoolsandauniversallowcostrobotizedmicroscope