Assessing Sustainable Urban Development Trends in a Dynamic Tourist Coastal Area Using 3D Spatial Indicators

In coastal areas, the tourism sector contributes to the local economy, generating income, employment, investments and tax revenues but the rapid urban expansion creates great pressure on local resources and infrastructures, with negative repercussions on the residents’ quality of life, but also comp...

Full description

Bibliographic Details
Main Authors: Teresa Santos, Raquel Deus, Jorge Rocha, José António Tenedório
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/16/5044
Description
Summary:In coastal areas, the tourism sector contributes to the local economy, generating income, employment, investments and tax revenues but the rapid urban expansion creates great pressure on local resources and infrastructures, with negative repercussions on the residents’ quality of life, but also compromising the visitor’s experience. These areas face problems such as the formation of meteorological effects known as heat islands, due to the soil sealing, and increased energy demand in the peak season. To evaluate the impact of urban growth spatial pattern and change, three strategic sustainable challenges—urban form, urban energy, and urban outdoor comfort—were selected. The progress towards sustainability was measured and analyzed in a tourist city in the Algarve region, Portugal, for the period 2007–2018, using geographic information. A set of 2D and 3D indicators was derived for the building and block scales. Then, a change assessment based on cluster analysis was performed, and three different trends of sustainable development were identified and mapped. Results allow detecting the urban growth patterns that lead to more sustainable urban areas. The study revealed that a high sustainable development was observed in 12% of the changed blocks in the study area. All indicators suggest that the growth pattern of the coastal area is in line with the studied sustainability dimensions. However, most of the blocks that changed between 2007 and 2018 (82%) followed a low sustainable development. These blocks had the lowest variation in the built volume and density, and consequently the lowest variations in the roof areas with good solar exposition. The urban development also privileged more detached and less compact buildings. This analysis will support the integration of 2D and 3D information into the planning process, assisting smart cities to comply with the sustainable development goals.
ISSN:1996-1073