Parametric Elliptical Regression Quantiles

The article extends linear and nonlinear quantile regression to the case of vector responses by generalizing multivariate elliptical quantiles to a regression context. In particular, it introduces parametric elliptical quantile regression in a general nonlinear multivariate heteroscedastic framewor...

Full description

Bibliographic Details
Main Authors: Daniel Hlubinka, Miroslav Šiman
Format: Article
Language:English
Published: Instituto Nacional de Estatística | Statistics Portugal 2020-08-01
Series:Revstat Statistical Journal
Subjects:
Online Access:https://revstat.ine.pt/index.php/REVSTAT/article/view/300
_version_ 1828150888710012928
author Daniel Hlubinka
Miroslav Šiman
author_facet Daniel Hlubinka
Miroslav Šiman
author_sort Daniel Hlubinka
collection DOAJ
description The article extends linear and nonlinear quantile regression to the case of vector responses by generalizing multivariate elliptical quantiles to a regression context. In particular, it introduces parametric elliptical quantile regression in a general nonlinear multivariate heteroscedastic framework and discusses, investigates, and illustrates the new method in some detail, including basic properties, various parametrizations, possible heteroscedastic patterns, related computational issues, model validation, and a real biometric data example. The method seems suitable for multiresponse regression models with symmetric errors, especially if the dimension of responses is less than ten and if the right parametrization of the model follows from the context.
first_indexed 2024-04-11T21:50:16Z
format Article
id doaj.art-322604e87a054b5bad335126d1c59160
institution Directory Open Access Journal
issn 1645-6726
2183-0371
language English
last_indexed 2024-04-11T21:50:16Z
publishDate 2020-08-01
publisher Instituto Nacional de Estatística | Statistics Portugal
record_format Article
series Revstat Statistical Journal
spelling doaj.art-322604e87a054b5bad335126d1c591602022-12-22T04:01:16ZengInstituto Nacional de Estatística | Statistics PortugalRevstat Statistical Journal1645-67262183-03712020-08-0118310.57805/revstat.v18i3.300Parametric Elliptical Regression QuantilesDaniel Hlubinka 0Miroslav Šiman 1Charles UniversityInstitute of Information Theory and Automation The article extends linear and nonlinear quantile regression to the case of vector responses by generalizing multivariate elliptical quantiles to a regression context. In particular, it introduces parametric elliptical quantile regression in a general nonlinear multivariate heteroscedastic framework and discusses, investigates, and illustrates the new method in some detail, including basic properties, various parametrizations, possible heteroscedastic patterns, related computational issues, model validation, and a real biometric data example. The method seems suitable for multiresponse regression models with symmetric errors, especially if the dimension of responses is less than ten and if the right parametrization of the model follows from the context. https://revstat.ine.pt/index.php/REVSTAT/article/view/300multiple-output regressionquantile regressionnonlinear regressionelliptical quantile
spellingShingle Daniel Hlubinka
Miroslav Šiman
Parametric Elliptical Regression Quantiles
Revstat Statistical Journal
multiple-output regression
quantile regression
nonlinear regression
elliptical quantile
title Parametric Elliptical Regression Quantiles
title_full Parametric Elliptical Regression Quantiles
title_fullStr Parametric Elliptical Regression Quantiles
title_full_unstemmed Parametric Elliptical Regression Quantiles
title_short Parametric Elliptical Regression Quantiles
title_sort parametric elliptical regression quantiles
topic multiple-output regression
quantile regression
nonlinear regression
elliptical quantile
url https://revstat.ine.pt/index.php/REVSTAT/article/view/300
work_keys_str_mv AT danielhlubinka parametricellipticalregressionquantiles
AT miroslavsiman parametricellipticalregressionquantiles