Quasi-posinormal operators
In this paper, we introduce a class of operators on a Hilbert space namely quasi-posinormal operators that contain properly the classes of normal operator, hyponormal operators, M–hyponormal operators, dominant operators and posinormal operators . We study some basic properties of these operators ....
Main Author: | |
---|---|
Format: | Article |
Language: | Arabic |
Published: |
College of Science for Women, University of Baghdad
2010-09-01
|
Series: | Baghdad Science Journal |
Subjects: | |
Online Access: | http://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/1102 |
_version_ | 1818777838359150592 |
---|---|
author | Baghdad Science Journal |
author_facet | Baghdad Science Journal |
author_sort | Baghdad Science Journal |
collection | DOAJ |
description | In this paper, we introduce a class of operators on a Hilbert space namely quasi-posinormal operators that contain properly the classes of normal operator, hyponormal operators, M–hyponormal operators, dominant operators and posinormal operators . We study some basic properties of these operators .Also we are looking at the relationship between invertibility operator and quasi-posinormal operator . |
first_indexed | 2024-12-18T11:35:11Z |
format | Article |
id | doaj.art-32308dd8faf9499699f8ab532ab2d090 |
institution | Directory Open Access Journal |
issn | 2078-8665 2411-7986 |
language | Arabic |
last_indexed | 2024-12-18T11:35:11Z |
publishDate | 2010-09-01 |
publisher | College of Science for Women, University of Baghdad |
record_format | Article |
series | Baghdad Science Journal |
spelling | doaj.art-32308dd8faf9499699f8ab532ab2d0902022-12-21T21:09:32ZaraCollege of Science for Women, University of BaghdadBaghdad Science Journal2078-86652411-79862010-09-017310.21123/bsj.7.3.1282-1287Quasi-posinormal operatorsBaghdad Science JournalIn this paper, we introduce a class of operators on a Hilbert space namely quasi-posinormal operators that contain properly the classes of normal operator, hyponormal operators, M–hyponormal operators, dominant operators and posinormal operators . We study some basic properties of these operators .Also we are looking at the relationship between invertibility operator and quasi-posinormal operator .http://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/1102"posinormal operators , Hyponormal operators , M- hyponormal operators, dominant operators" |
spellingShingle | Baghdad Science Journal Quasi-posinormal operators Baghdad Science Journal "posinormal operators , Hyponormal operators , M- hyponormal operators, dominant operators" |
title | Quasi-posinormal operators |
title_full | Quasi-posinormal operators |
title_fullStr | Quasi-posinormal operators |
title_full_unstemmed | Quasi-posinormal operators |
title_short | Quasi-posinormal operators |
title_sort | quasi posinormal operators |
topic | "posinormal operators , Hyponormal operators , M- hyponormal operators, dominant operators" |
url | http://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/1102 |
work_keys_str_mv | AT baghdadsciencejournal quasiposinormaloperators |