Li-Doping Effect on Characteristics of ZnO Thin Films Resistive Random Access Memory

In this study, a Pt/Ag/LZO/Pt resistive random access memory (RRAM), doped by different Li-doping concentrations was designed and fabricated by using a magnetron sputtering method. To determine how the Li-doping concentration affects the crystal lattice structure in the composite ZnO thin films, X-r...

Full description

Bibliographic Details
Main Authors: Xiaofeng Zhao, Ping Song, Huiling Gai, Yi Li, Chunpeng Ai, Dianzhong Wen
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/11/10/889
Description
Summary:In this study, a Pt/Ag/LZO/Pt resistive random access memory (RRAM), doped by different Li-doping concentrations was designed and fabricated by using a magnetron sputtering method. To determine how the Li-doping concentration affects the crystal lattice structure in the composite ZnO thin films, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) tests were carried out. The resistive switching behaviors of the resulting Pt/Ag/LZO/Pt devices, with different Li-doping contents, were studied under direct current (DC) and pulse voltages. The experimental results showed that compared with the devices doped with Li-8% and -10%, the ZnO based RRAM device doped by 5% Li-doping presented stable bipolar resistive switching behaviors with DC voltage, including a low switching voltage (<1.0 V), a high endurance (>10<sup>3</sup> cycles), long retention time (>10<sup>4</sup> s), and a large resistive switching window. In addition, quick switching between a high-resistance state (HRS) and a low-resistance state (LRS) was achieved at a pulse voltage. To investigate the resistive switching mechanism of the device, a conduction model was installed based on Ag conducting filament transmission. The study of the resulting Pt/Ag/LZO/Pt devices makes it possible to further improve the performance of RRAM devices.
ISSN:2072-666X