A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis

Pathogen whole genome sequencing, coupled with statistical and machine learning models, offers a promising solution to multi-drug resistance diagnosis. Here, the authors present two deep convolutional neural networks that predict the antibiotic resistance phenotypes of M. tuberculosis isolates.

Bibliographic Details
Main Authors: Anna G. Green, Chang Ho Yoon, Michael L. Chen, Yasha Ektefaie, Mack Fina, Luca Freschi, Matthias I. Gröschel, Isaac Kohane, Andrew Beam, Maha Farhat
Format: Article
Language:English
Published: Nature Portfolio 2022-07-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-022-31236-0
_version_ 1817976541429104640
author Anna G. Green
Chang Ho Yoon
Michael L. Chen
Yasha Ektefaie
Mack Fina
Luca Freschi
Matthias I. Gröschel
Isaac Kohane
Andrew Beam
Maha Farhat
author_facet Anna G. Green
Chang Ho Yoon
Michael L. Chen
Yasha Ektefaie
Mack Fina
Luca Freschi
Matthias I. Gröschel
Isaac Kohane
Andrew Beam
Maha Farhat
author_sort Anna G. Green
collection DOAJ
description Pathogen whole genome sequencing, coupled with statistical and machine learning models, offers a promising solution to multi-drug resistance diagnosis. Here, the authors present two deep convolutional neural networks that predict the antibiotic resistance phenotypes of M. tuberculosis isolates.
first_indexed 2024-04-13T22:04:56Z
format Article
id doaj.art-324ced25c6614875b873dd6824eb5f41
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-04-13T22:04:56Z
publishDate 2022-07-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-324ced25c6614875b873dd6824eb5f412022-12-22T02:27:58ZengNature PortfolioNature Communications2041-17232022-07-0113111210.1038/s41467-022-31236-0A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosisAnna G. Green0Chang Ho Yoon1Michael L. Chen2Yasha Ektefaie3Mack Fina4Luca Freschi5Matthias I. Gröschel6Isaac Kohane7Andrew Beam8Maha Farhat9Department of Biomedical Informatics, Harvard Medical SchoolDepartment of Biomedical Informatics, Harvard Medical SchoolDepartment of Biomedical Informatics, Harvard Medical SchoolDepartment of Biomedical Informatics, Harvard Medical SchoolHarvard CollegeDepartment of Biomedical Informatics, Harvard Medical SchoolDepartment of Biomedical Informatics, Harvard Medical SchoolDepartment of Biomedical Informatics, Harvard Medical SchoolDepartment of Biomedical Informatics, Harvard Medical SchoolDepartment of Biomedical Informatics, Harvard Medical SchoolPathogen whole genome sequencing, coupled with statistical and machine learning models, offers a promising solution to multi-drug resistance diagnosis. Here, the authors present two deep convolutional neural networks that predict the antibiotic resistance phenotypes of M. tuberculosis isolates.https://doi.org/10.1038/s41467-022-31236-0
spellingShingle Anna G. Green
Chang Ho Yoon
Michael L. Chen
Yasha Ektefaie
Mack Fina
Luca Freschi
Matthias I. Gröschel
Isaac Kohane
Andrew Beam
Maha Farhat
A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis
Nature Communications
title A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis
title_full A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis
title_fullStr A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis
title_full_unstemmed A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis
title_short A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis
title_sort convolutional neural network highlights mutations relevant to antimicrobial resistance in mycobacterium tuberculosis
url https://doi.org/10.1038/s41467-022-31236-0
work_keys_str_mv AT annaggreen aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT changhoyoon aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT michaellchen aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT yashaektefaie aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT mackfina aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT lucafreschi aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT matthiasigroschel aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT isaackohane aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT andrewbeam aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT mahafarhat aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT annaggreen convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT changhoyoon convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT michaellchen convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT yashaektefaie convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT mackfina convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT lucafreschi convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT matthiasigroschel convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT isaackohane convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT andrewbeam convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT mahafarhat convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis