AI Inspired Intelligent Resource Management in Future Wireless Network

In order to improve network performance, including reducing computation delay, transmission delay and bandwidth consumption, edge computing and caching technologies are introduced to the fifth-generation wireless network (5G). However, the volume of edge resources is limited, while the number and co...

Full description

Bibliographic Details
Main Authors: Sibao Fu, Fan Yang, Ye Xiao
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8966360/
Description
Summary:In order to improve network performance, including reducing computation delay, transmission delay and bandwidth consumption, edge computing and caching technologies are introduced to the fifth-generation wireless network (5G). However, the volume of edge resources is limited, while the number and complexity of tasks in the network are increasing sharply. Therefore, how to provide the most efficient service for network users with limited resources is an urgent problem to be solved. Thus, improving the utilization rate of communication, computing and caching resources in the network is an important issue. The diversification of network resources brings difficulties to network management. The joint resource allocation problem is difficult to be solved by traditional approaches. With the development of Artificial Intelligence (AI) technology, these AI algorithms have been applied to joint resource allocation problems to solve complex decision-making problems. In this paper, we first summarize the AI-based joint resources allocation schemes. Then, an AI-assisted intelligent wireless network architecture is proposed. Finally, based on the proposed architecture, we use deep Q-network (DQN) algorithm to figure out the complex and high-dimensional joint resource allocation problem. Simulation results show that the algorithm has good convergence characteristics, proposed architecture and the joint resource allocation scheme achieve better performance compared to other resource allocation schemes.
ISSN:2169-3536