The mammalian adult neurogenesis gene ontology (MANGO) provides a structural framework for published information on genes regulating adult hippocampal neurogenesis.

<h4>Background</h4>Adult hippocampal neurogenesis is not a single phenotype, but consists of a number of sub-processes, each of which is under complex genetic control. Interpretation of gene expression studies using existing resources often does not lead to results that address the inter...

Full description

Bibliographic Details
Main Authors: Rupert W Overall, Maciej Paszkowski-Rogacz, Gerd Kempermann
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23139788/?tool=EBI
_version_ 1818435253917712384
author Rupert W Overall
Maciej Paszkowski-Rogacz
Gerd Kempermann
author_facet Rupert W Overall
Maciej Paszkowski-Rogacz
Gerd Kempermann
author_sort Rupert W Overall
collection DOAJ
description <h4>Background</h4>Adult hippocampal neurogenesis is not a single phenotype, but consists of a number of sub-processes, each of which is under complex genetic control. Interpretation of gene expression studies using existing resources often does not lead to results that address the interrelatedness of these processes. Formal structure, such as provided by ontologies, is essential in any field for comprehensive interpretation of existing knowledge but, until now, such a structure has been lacking for adult neurogenesis.<h4>Methodology/principal findings</h4>We have created a resource with three components 1. A structured ontology describing the key stages in the development of adult hippocampal neural stem cells into functional granule cell neurons. 2. A comprehensive survey of the literature to annotate the results of all published reports on gene function in adult hippocampal neurogenesis (257 manuscripts covering 228 genes) to the appropriate terms in our ontology. 3. An easy-to-use searchable interface to the resulting database made freely available online. The manuscript presents an overview of the database highlighting global trends such as the current bias towards research on early proliferative stages, and an example gene set enrichment analysis. A limitation of the resource is the current scope of the literature which, however, is growing by around 100 publications per year. With the ontology and database in place, new findings can be rapidly annotated and regular updates of the database will be made publicly available.<h4>Conclusions/significance</h4>The resource we present allows relevant interpretation of gene expression screens in terms of defined stages of postnatal neuronal development. Annotation of genes by hand from the adult neurogenesis literature ensures the data are directly applicable to the system under study. We believe this approach could also serve as an example to other fields in a 'bottom-up' community effort complementing the already successful 'top-down' approach of the Gene Ontology.
first_indexed 2024-12-14T16:49:57Z
format Article
id doaj.art-326807410c16447d8c3233c7e0ffc126
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-14T16:49:57Z
publishDate 2012-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-326807410c16447d8c3233c7e0ffc1262022-12-21T22:54:04ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-01711e4852710.1371/journal.pone.0048527The mammalian adult neurogenesis gene ontology (MANGO) provides a structural framework for published information on genes regulating adult hippocampal neurogenesis.Rupert W OverallMaciej Paszkowski-RogaczGerd Kempermann<h4>Background</h4>Adult hippocampal neurogenesis is not a single phenotype, but consists of a number of sub-processes, each of which is under complex genetic control. Interpretation of gene expression studies using existing resources often does not lead to results that address the interrelatedness of these processes. Formal structure, such as provided by ontologies, is essential in any field for comprehensive interpretation of existing knowledge but, until now, such a structure has been lacking for adult neurogenesis.<h4>Methodology/principal findings</h4>We have created a resource with three components 1. A structured ontology describing the key stages in the development of adult hippocampal neural stem cells into functional granule cell neurons. 2. A comprehensive survey of the literature to annotate the results of all published reports on gene function in adult hippocampal neurogenesis (257 manuscripts covering 228 genes) to the appropriate terms in our ontology. 3. An easy-to-use searchable interface to the resulting database made freely available online. The manuscript presents an overview of the database highlighting global trends such as the current bias towards research on early proliferative stages, and an example gene set enrichment analysis. A limitation of the resource is the current scope of the literature which, however, is growing by around 100 publications per year. With the ontology and database in place, new findings can be rapidly annotated and regular updates of the database will be made publicly available.<h4>Conclusions/significance</h4>The resource we present allows relevant interpretation of gene expression screens in terms of defined stages of postnatal neuronal development. Annotation of genes by hand from the adult neurogenesis literature ensures the data are directly applicable to the system under study. We believe this approach could also serve as an example to other fields in a 'bottom-up' community effort complementing the already successful 'top-down' approach of the Gene Ontology.https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23139788/?tool=EBI
spellingShingle Rupert W Overall
Maciej Paszkowski-Rogacz
Gerd Kempermann
The mammalian adult neurogenesis gene ontology (MANGO) provides a structural framework for published information on genes regulating adult hippocampal neurogenesis.
PLoS ONE
title The mammalian adult neurogenesis gene ontology (MANGO) provides a structural framework for published information on genes regulating adult hippocampal neurogenesis.
title_full The mammalian adult neurogenesis gene ontology (MANGO) provides a structural framework for published information on genes regulating adult hippocampal neurogenesis.
title_fullStr The mammalian adult neurogenesis gene ontology (MANGO) provides a structural framework for published information on genes regulating adult hippocampal neurogenesis.
title_full_unstemmed The mammalian adult neurogenesis gene ontology (MANGO) provides a structural framework for published information on genes regulating adult hippocampal neurogenesis.
title_short The mammalian adult neurogenesis gene ontology (MANGO) provides a structural framework for published information on genes regulating adult hippocampal neurogenesis.
title_sort mammalian adult neurogenesis gene ontology mango provides a structural framework for published information on genes regulating adult hippocampal neurogenesis
url https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23139788/?tool=EBI
work_keys_str_mv AT rupertwoverall themammalianadultneurogenesisgeneontologymangoprovidesastructuralframeworkforpublishedinformationongenesregulatingadulthippocampalneurogenesis
AT maciejpaszkowskirogacz themammalianadultneurogenesisgeneontologymangoprovidesastructuralframeworkforpublishedinformationongenesregulatingadulthippocampalneurogenesis
AT gerdkempermann themammalianadultneurogenesisgeneontologymangoprovidesastructuralframeworkforpublishedinformationongenesregulatingadulthippocampalneurogenesis
AT rupertwoverall mammalianadultneurogenesisgeneontologymangoprovidesastructuralframeworkforpublishedinformationongenesregulatingadulthippocampalneurogenesis
AT maciejpaszkowskirogacz mammalianadultneurogenesisgeneontologymangoprovidesastructuralframeworkforpublishedinformationongenesregulatingadulthippocampalneurogenesis
AT gerdkempermann mammalianadultneurogenesisgeneontologymangoprovidesastructuralframeworkforpublishedinformationongenesregulatingadulthippocampalneurogenesis