Differential mRNA Expression Profiling Reveals the Role of MiR-375 in Inflammation of Bovine Mammary Epithelial Cells

MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate post-transcriptional gene expression and several biological processes. Bovine mammary epithelial cells (bMECs) mediate critical immune responses in the mammary gland and the occurrence of mastitis. Current research focuses on miRN...

Full description

Bibliographic Details
Main Authors: Yuhang Li, Qichao Hu, Zhuoma Luoreng, Jian Yang, Xingping Wang, Yun Ma, Dawei Wei
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Animals
Subjects:
Online Access:https://www.mdpi.com/2076-2615/12/11/1431
Description
Summary:MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate post-transcriptional gene expression and several biological processes. Bovine mammary epithelial cells (bMECs) mediate critical immune responses in the mammary gland and the occurrence of mastitis. Current research focuses on miRNA regulation of bMECs, but the miR-375 regulatory mechanism in bMECs is unclear. This study explored the role of miR-375 by profiling the transcriptome of miR-375-silenced bMECs using RNA-seq and identifying differentially expressed mRNAs (DIE-mRNAs). There were 63 DIE-mRNAs, including 48 down-regulated and 15 up-regulated mRNAs between miR-375-silenced bMECs and the controls. The Kyoto encyclopedia of genes and genomes (KEGG) and Gene Ontology (GO) functional analysis showed that the DIE-mRNAs enriched nuclear receptor subfamily 4 group A member 1 (<i>NR4A1</i>) and protein tyrosine phosphatase non-receptor type 5 (<i>PTPN5</i>) anti-inflammatory genes of the mitogen-activated protein kinase (MAPK) signaling pathway. However, they showed an opposite trend to the expression of miR-375 silencing, suggesting that miR-375 promotes bMEC inflammation through the MAPK signaling pathway. The findings of this study provide a new reference for understanding the regulation of bMEC inflammation and cow mastitis.
ISSN:2076-2615