Study on the Properties of Coated Cutters on Functionally Graded WC-Co/Ni-Zr Substrates with FCC Phase Enriched Surfaces

Currently, the research on mechanical behavior and cutting performance of functionally graded carbides is quite limited, which limits the rapid development of high-performance cemented carbide cutting tools. Based on WC-Co-Zr and WC-Ni-Zr, this study synthesized two kinds of cemented carbide cutters...

Full description

Bibliographic Details
Main Authors: Shidi Li, Xiangyuan Xue, Jiaxing Chen, Tengxuan Lu, Zhe Zhao, Xin Deng, Zhongliang Lu, Zhongping Wang, Zhangxu Li, Zhi Qu
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/11/12/1538
Description
Summary:Currently, the research on mechanical behavior and cutting performance of functionally graded carbides is quite limited, which limits the rapid development of high-performance cemented carbide cutting tools. Based on WC-Co-Zr and WC-Ni-Zr, this study synthesized two kinds of cemented carbide cutters, i.e., the cemented carbide cutters with homogeneous microstructure and functionally graded carbide (FGC) cutters with FCC phase ZrN-enriched surfaces. Furthermore, TiAlN coating has been investigated on these carbide cutters. Mechanical behavior, friction, wear performance, and cutting behavior have been investigated for these coated carbides and their corresponding substrates. It was found that, as compared with coated cutters on WC-Co/Ni-Zr carbide substrates with homogeneous microstructures, the coated cutters on WC-Co/Ni-Zr FGC substrates with FCC phase-enriched surfaces show higher wear resistance and cutting life, and the wear mechanism during cutting is mainly adhesion wear.
ISSN:2073-4352