A Novel Catalytic Micro-Combustor Inspired by the Nasal Geometry of Reindeer: CFD Modeling and Simulation

A three-dimensional CFD model of a novel configuration of catalytic micro-combustor inspired by the nasal geometry of reindeer was developed using the commercial code ANSYS Fluent 19.0. The thermal behavior of this nature-inspired (NI) configuration was investigated through simulations of lean propa...

Full description

Bibliographic Details
Main Authors: Valeria Di Sarli, Marco Trofa, Almerinda Di Benedetto
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/10/6/606
Description
Summary:A three-dimensional CFD model of a novel configuration of catalytic micro-combustor inspired by the nasal geometry of reindeer was developed using the commercial code ANSYS Fluent 19.0. The thermal behavior of this nature-inspired (NI) configuration was investigated through simulations of lean propane/air combustion performed at different values of residence time (i.e., inlet gas velocity) and (external convective) heat transfer coefficient. Simulations at the same conditions were also run for a standard parallel-channel (PC) configuration of equivalent dimensions. Numerical results show that the operating window of stable combustion is wider in the case of the NI configuration. In particular, the blow-out behavior is substantially the same for the two configurations. Conversely, the extinction behavior, which is dominated by competition between the heat losses towards the external environment and the heat produced by combustion, differs. The NI configuration exhibits a greater ability than the PC configuration to keep the heat generated by combustion trapped inside the micro-reactor. As a consequence, extinction occurs at higher values of residence time and heat transfer coefficient for this novel configuration.
ISSN:2073-4344