Assessment of Biofilm Growth on Microplastics in Freshwaters Using a Passive Flow-Through System
Biofilms that colonize on the surface of microplastics (MPs) in freshwaters may pose a potential health risk. This study examined factors that influence MP-associated biofilm growth, including polymer type, degree of weathering, and source water quality. Weathered MPs produced in-lab were employed i...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-12-01
|
Series: | Toxics |
Subjects: | |
Online Access: | https://www.mdpi.com/2305-6304/11/12/987 |
Summary: | Biofilms that colonize on the surface of microplastics (MPs) in freshwaters may pose a potential health risk. This study examined factors that influence MP-associated biofilm growth, including polymer type, degree of weathering, and source water quality. Weathered MPs produced in-lab were employed in biofilm trials conducted on site using a passive flow-through system with raw water at drinking water treatment facility intakes. Adenosine triphosphate (ATP) was used to quantify biofilm abundance; biofilm composition was assessed via metagenomic sequencing. Biofilm growth was observed on all polymer types examined and most prevalent on polyvinyl chloride (PVC), where ATP levels were 6 to 12 times higher when compared to other polymers. Pathogen-containing species including Salmonella enterica and Escherichia coli were present on all polymers with relative abundance up to 13.7%. <i>S. enterica</i> was selectively enriched on weathered MPs in specific water matrices. These findings support the need to research the potential accumulation of pathogenic organisms on microplastic surfaces. |
---|---|
ISSN: | 2305-6304 |