Mapping Spatiotemporal Dynamic Changes in Urban CO<sub>2</sub> Emissions in China by Using the Machine Learning Method and Geospatial Big Data

Accurately and objectively evaluating the spatiotemporal dynamic changes in CO<sub>2</sub> emissions is significant for human sustainable development. However, traditional CO<sub>2</sub> emissions estimates, typically derived from national or provincial energy statistics, oft...

Descripció completa

Dades bibliogràfiques
Autors principals: Wei Guo, Yongxing Li, Ximin Cui, Xuesheng Zhao, Yongjia Teng, Andreas Rienow
Format: Article
Idioma:English
Publicat: MDPI AG 2025-02-01
Col·lecció:Remote Sensing
Matèries:
Accés en línia:https://www.mdpi.com/2072-4292/17/4/611