Summary: | The new Egyptian Code (ECP-201:2012) introduces new vehicular live loads (VLL) and new load combinations for the design of roadway bridges. The new VLL and load combinations introduced in ECP-201:2012 are fundamentally different than those presented in previous versions of the code. The impact of these new loads and load combinations on the design of new bridges or the structural safety of the existing bridges that have been designed according to ECP-201:2003 or ECP-201:1993 has not been fully addressed for the different bridge deck systems. Three different bridge deck systems, i.e. concrete I-shaped girders, composite steel plate girders, and concrete box-girders with different spans were numerically modeled using two-dimensional grillage analogy. The bridge decks were analyzed under main gravity loads using VLL according to ECP-201:2012 and ECP-201:2003. The internal forces of individual load cases, total un-factored load combination, and total factored load combination of ECP-201:2012 and ECP-201:2003 were compared.
The study shows that concrete box-girders designed according to ECP-201:2012 and ECP-201:2003 using the ultimate limit state method yield almost the same demand. Despite the increase in the VLL of ECP-201:2012, and consequently the live load forces, concrete I-shaped girder bridges will be subjected to less total factored internal forces in comparison to ECP-201:2003 This is attributed to the interaction between the live to dead loads ratio and the load combinations. Design of composite steel plate girder bridges according to ECP-201:2012 using the allowable stress design method yields over designed sections.
|