The influence of FAAH genetic variation on physiological, cognitive, and neural signatures of fear acquisition and extinction learning in women with PTSD

Background: Posttraumatic Stress Disorder (PTSD) is commonly treated with exposure-based cognitive therapies that are based on the principles of fear acquisition and extinction learning. Elevations in one of the major endocannabinoids (anandamide) either via inhibition of the primary degrading enzym...

Full description

Bibliographic Details
Main Authors: Kevin M. Crombie, Anthony A. Privratsky, Chloe M. Schomaker, Mickela Heilicher, Marisa C. Ross, Anneliis Sartin-Tarm, Kyrie Sellnow, Elisabeth B. Binder, G. Andrew James, Josh M. Cisler
Format: Article
Language:English
Published: Elsevier 2022-01-01
Series:NeuroImage: Clinical
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2213158221003661
Description
Summary:Background: Posttraumatic Stress Disorder (PTSD) is commonly treated with exposure-based cognitive therapies that are based on the principles of fear acquisition and extinction learning. Elevations in one of the major endocannabinoids (anandamide) either via inhibition of the primary degrading enzyme (fatty acid amide hydrolase; FAAH) or via a genetic variation in the FAAH gene (C385A; rs324420) has resulted in accelerated extinction learning and enhanced extinction recall among healthy adults. These results suggest that targeting FAAH may be a promising therapeutic approach for PTSD. However, these effects have not yet been comprehensively examined in a PTSD population. Methods: The current study examined whether genetic variation in the FAAH gene (CC [n = 49] vs AA/AC [n = 36] allele carriers) influences physiological (skin conductance), cognitive (threat expectancy), and neural (network and voxel-wise activation) indices of fear acquisition and extinction learning among a sample of adult women with PTSD (N = 85). Results: The physiological, cognitive, and neural signatures of fear acquisition and extinction learning varied as a function of whether or not individuals possess the FAAH C385A polymorphism. For instance, we report divergent responding between CC and AA/AC allele carriers to CS + vs CS- in limbic and striatum networks and overall greater activation throughout the task among AA/AC allele carriers in several regions [e.g., inferior frontal, middle frontal, parietal] that are highly consistent with a frontoparietal network involved in higher-order executive functions. Conclusions: These results suggest that genetic variation within the FAAH gene influences physiological, cognitive, and neural signatures of fear learning in women with PTSD. In order to advance our understanding of the efficacy of FAAH inhibition as a treatment for PTSD, future clinical trials in this area should assess genetic variation in the FAAH gene in order to fully depict and differentiate the acute effects of a drug manipulation (FAAH inhibition) from more chronic (genetic) influences on fear extinction processes.
ISSN:2213-1582