Summary: | Abstract Tissue-specific endopolyploidy is widespread among plants and animals and its role in organ development and function has long been investigated. In insects, the fat body cells of sexually mature females produce substantial amounts of egg yolk precursor proteins (vitellogenins) and exhibit high polyploid levels, which is considered crucial for boosting egg production. Termites are social insects with a reproductive division of labor, and the fat bodies of mature termite queens exhibit higher ploidy levels than those of other females. The fat bodies of mature termite queens are known to be histologically and cytologically specialized in protein synthesis. However, the relationship between such modifications and polyploidization remains unknown. In this study, we investigated the relationship among cell type, queen maturation, and ploidy levels in the fat body of the termite Reticulitermes speratus. We first confirmed that the termite fat body consists of two types of cells, that is, adipocytes, metabolically active cells, and urocytes, urate-storing cells. Our ploidy analysis using flow cytometry has shown that the fat bodies of actively reproducing queens had more polyploid cells than those of newly emerged and pre-reproductive queens, regardless of the queen phenotype (adult or neotenic type). Using image-based analysis, we found that not urocytes, but adipocytes became polyploid during queen differentiation and subsequent sexual maturation. These results suggest that polyploidization in the termite queen fat body is associated with sexual maturation and is regulated in a cell type-specific manner. Our study findings have provided novel insights into the development of insect fat bodies and provide a basis for future studies to understand the functional importance of polyploidy in the fat bodies of termite queens.
|