Velocity Dealiasing for 94 GHz Vertically Pointing MMCR with Dual-PRF Technique

Velocity aliasing is unavoidable for millimeter-wave cloud radar (MMCR) due to its short wavelength. In the vertically pointing MMCR, a special aliasing state called half-folding will cause the traditional postprocessing dealiasing methods used for weather radar, including the dual-PRF method, to fa...

Full description

Bibliographic Details
Main Authors: Hai Lin, Jie Wang, Junxiang Ge
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/21/5234
Description
Summary:Velocity aliasing is unavoidable for millimeter-wave cloud radar (MMCR) due to its short wavelength. In the vertically pointing MMCR, a special aliasing state called half-folding will cause the traditional postprocessing dealiasing methods used for weather radar, including the dual-PRF method, to fail. In this paper, we propose a method that applies the dual-PRF technique to spectral dealiasing. By utilizing the property that the true velocity difference between peaks should be the same in both PRFs, our method is able to solve a special case of half-folding caused by multiple peaks, which is ignored by other spectral dealiasing methods. The special case, which we call implicit half-folding, occurs in the presence of multiple peaks in a Doppler power spectrum, where none of the peaks are folded, and they appear to be in the same Nyquist interval, whereas the peaks are actually not in the same Nyquist interval. Observations from a 94 GHz vertically pointing MMCR called TJ-II were used to demonstrate various aliasing cases, including the implicit half-folding case. As a result, our method successfully solved all aliasing cases while the other method failed when the implicit half-folding case occurred.
ISSN:2072-4292